Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
3 |
1 2
|
iscplgredg |
|- ( G e. ComplGraph -> ( G e. ComplGraph <-> A. v e. ( Vtx ` G ) A. n e. ( ( Vtx ` G ) \ { v } ) E. e e. ( Edg ` G ) { v , n } C_ e ) ) |
4 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
5 |
4
|
a1i |
|- ( G e. ComplGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
6 |
|
simpl |
|- ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> ( Vtx ` g ) = ( Vtx ` G ) ) |
7 |
6
|
adantl |
|- ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> ( Vtx ` g ) = ( Vtx ` G ) ) |
8 |
6
|
difeq1d |
|- ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> ( ( Vtx ` g ) \ { v } ) = ( ( Vtx ` G ) \ { v } ) ) |
9 |
8
|
adantl |
|- ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> ( ( Vtx ` g ) \ { v } ) = ( ( Vtx ` G ) \ { v } ) ) |
10 |
|
edgval |
|- ( Edg ` g ) = ran ( iEdg ` g ) |
11 |
|
simpr |
|- ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> ( iEdg ` g ) = ( iEdg ` G ) ) |
12 |
11
|
rneqd |
|- ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> ran ( iEdg ` g ) = ran ( iEdg ` G ) ) |
13 |
10 12
|
eqtrid |
|- ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> ( Edg ` g ) = ran ( iEdg ` G ) ) |
14 |
13
|
adantl |
|- ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> ( Edg ` g ) = ran ( iEdg ` G ) ) |
15 |
|
simpl |
|- ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
16 |
14 15
|
eqtr4d |
|- ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> ( Edg ` g ) = ( Edg ` G ) ) |
17 |
16
|
rexeqdv |
|- ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> ( E. e e. ( Edg ` g ) { v , n } C_ e <-> E. e e. ( Edg ` G ) { v , n } C_ e ) ) |
18 |
9 17
|
raleqbidv |
|- ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> ( A. n e. ( ( Vtx ` g ) \ { v } ) E. e e. ( Edg ` g ) { v , n } C_ e <-> A. n e. ( ( Vtx ` G ) \ { v } ) E. e e. ( Edg ` G ) { v , n } C_ e ) ) |
19 |
7 18
|
raleqbidv |
|- ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> ( A. v e. ( Vtx ` g ) A. n e. ( ( Vtx ` g ) \ { v } ) E. e e. ( Edg ` g ) { v , n } C_ e <-> A. v e. ( Vtx ` G ) A. n e. ( ( Vtx ` G ) \ { v } ) E. e e. ( Edg ` G ) { v , n } C_ e ) ) |
20 |
19
|
biimpar |
|- ( ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) /\ A. v e. ( Vtx ` G ) A. n e. ( ( Vtx ` G ) \ { v } ) E. e e. ( Edg ` G ) { v , n } C_ e ) -> A. v e. ( Vtx ` g ) A. n e. ( ( Vtx ` g ) \ { v } ) E. e e. ( Edg ` g ) { v , n } C_ e ) |
21 |
|
eqid |
|- ( Vtx ` g ) = ( Vtx ` g ) |
22 |
|
eqid |
|- ( Edg ` g ) = ( Edg ` g ) |
23 |
21 22
|
iscplgredg |
|- ( g e. _V -> ( g e. ComplGraph <-> A. v e. ( Vtx ` g ) A. n e. ( ( Vtx ` g ) \ { v } ) E. e e. ( Edg ` g ) { v , n } C_ e ) ) |
24 |
23
|
elv |
|- ( g e. ComplGraph <-> A. v e. ( Vtx ` g ) A. n e. ( ( Vtx ` g ) \ { v } ) E. e e. ( Edg ` g ) { v , n } C_ e ) |
25 |
20 24
|
sylibr |
|- ( ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) /\ A. v e. ( Vtx ` G ) A. n e. ( ( Vtx ` G ) \ { v } ) E. e e. ( Edg ` G ) { v , n } C_ e ) -> g e. ComplGraph ) |
26 |
25
|
expcom |
|- ( A. v e. ( Vtx ` G ) A. n e. ( ( Vtx ` G ) \ { v } ) E. e e. ( Edg ` G ) { v , n } C_ e -> ( ( ( Edg ` G ) = ran ( iEdg ` G ) /\ ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) ) -> g e. ComplGraph ) ) |
27 |
26
|
expd |
|- ( A. v e. ( Vtx ` G ) A. n e. ( ( Vtx ` G ) \ { v } ) E. e e. ( Edg ` G ) { v , n } C_ e -> ( ( Edg ` G ) = ran ( iEdg ` G ) -> ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> g e. ComplGraph ) ) ) |
28 |
5 27
|
syl5com |
|- ( G e. ComplGraph -> ( A. v e. ( Vtx ` G ) A. n e. ( ( Vtx ` G ) \ { v } ) E. e e. ( Edg ` G ) { v , n } C_ e -> ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> g e. ComplGraph ) ) ) |
29 |
3 28
|
sylbid |
|- ( G e. ComplGraph -> ( G e. ComplGraph -> ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> g e. ComplGraph ) ) ) |
30 |
29
|
pm2.43i |
|- ( G e. ComplGraph -> ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> g e. ComplGraph ) ) |
31 |
30
|
alrimiv |
|- ( G e. ComplGraph -> A. g ( ( ( Vtx ` g ) = ( Vtx ` G ) /\ ( iEdg ` g ) = ( iEdg ` G ) ) -> g e. ComplGraph ) ) |
32 |
|
fvexd |
|- ( G e. ComplGraph -> ( Vtx ` G ) e. _V ) |
33 |
|
fvexd |
|- ( G e. ComplGraph -> ( iEdg ` G ) e. _V ) |
34 |
31 32 33
|
gropeld |
|- ( G e. ComplGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. ComplGraph ) |