| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cply1coe0.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | cply1coe0.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | cply1coe0.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | cply1coe0.b |  |-  B = ( Base ` P ) | 
						
							| 5 |  | cply1coe0.a |  |-  A = ( algSc ` P ) | 
						
							| 6 | 3 5 1 2 | coe1scl |  |-  ( ( R e. Ring /\ S e. K ) -> ( coe1 ` ( A ` S ) ) = ( k e. NN0 |-> if ( k = 0 , S , .0. ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> ( coe1 ` ( A ` S ) ) = ( k e. NN0 |-> if ( k = 0 , S , .0. ) ) ) | 
						
							| 8 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 9 | 8 | neneqd |  |-  ( n e. NN -> -. n = 0 ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> -. n = 0 ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> -. n = 0 ) | 
						
							| 12 |  | eqeq1 |  |-  ( k = n -> ( k = 0 <-> n = 0 ) ) | 
						
							| 13 | 12 | notbid |  |-  ( k = n -> ( -. k = 0 <-> -. n = 0 ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> ( -. k = 0 <-> -. n = 0 ) ) | 
						
							| 15 | 11 14 | mpbird |  |-  ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> -. k = 0 ) | 
						
							| 16 | 15 | iffalsed |  |-  ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> if ( k = 0 , S , .0. ) = .0. ) | 
						
							| 17 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> n e. NN0 ) | 
						
							| 19 | 2 | fvexi |  |-  .0. e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> .0. e. _V ) | 
						
							| 21 | 7 16 18 20 | fvmptd |  |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> ( ( coe1 ` ( A ` S ) ) ` n ) = .0. ) | 
						
							| 22 | 21 | ralrimiva |  |-  ( ( R e. Ring /\ S e. K ) -> A. n e. NN ( ( coe1 ` ( A ` S ) ) ` n ) = .0. ) |