Metamath Proof Explorer


Theorem cply1coe0

Description: All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cply1coe0.k
|- K = ( Base ` R )
cply1coe0.0
|- .0. = ( 0g ` R )
cply1coe0.p
|- P = ( Poly1 ` R )
cply1coe0.b
|- B = ( Base ` P )
cply1coe0.a
|- A = ( algSc ` P )
Assertion cply1coe0
|- ( ( R e. Ring /\ S e. K ) -> A. n e. NN ( ( coe1 ` ( A ` S ) ) ` n ) = .0. )

Proof

Step Hyp Ref Expression
1 cply1coe0.k
 |-  K = ( Base ` R )
2 cply1coe0.0
 |-  .0. = ( 0g ` R )
3 cply1coe0.p
 |-  P = ( Poly1 ` R )
4 cply1coe0.b
 |-  B = ( Base ` P )
5 cply1coe0.a
 |-  A = ( algSc ` P )
6 3 5 1 2 coe1scl
 |-  ( ( R e. Ring /\ S e. K ) -> ( coe1 ` ( A ` S ) ) = ( k e. NN0 |-> if ( k = 0 , S , .0. ) ) )
7 6 adantr
 |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> ( coe1 ` ( A ` S ) ) = ( k e. NN0 |-> if ( k = 0 , S , .0. ) ) )
8 nnne0
 |-  ( n e. NN -> n =/= 0 )
9 8 neneqd
 |-  ( n e. NN -> -. n = 0 )
10 9 adantl
 |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> -. n = 0 )
11 10 adantr
 |-  ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> -. n = 0 )
12 eqeq1
 |-  ( k = n -> ( k = 0 <-> n = 0 ) )
13 12 notbid
 |-  ( k = n -> ( -. k = 0 <-> -. n = 0 ) )
14 13 adantl
 |-  ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> ( -. k = 0 <-> -. n = 0 ) )
15 11 14 mpbird
 |-  ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> -. k = 0 )
16 15 iffalsed
 |-  ( ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) /\ k = n ) -> if ( k = 0 , S , .0. ) = .0. )
17 nnnn0
 |-  ( n e. NN -> n e. NN0 )
18 17 adantl
 |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> n e. NN0 )
19 2 fvexi
 |-  .0. e. _V
20 19 a1i
 |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> .0. e. _V )
21 7 16 18 20 fvmptd
 |-  ( ( ( R e. Ring /\ S e. K ) /\ n e. NN ) -> ( ( coe1 ` ( A ` S ) ) ` n ) = .0. )
22 21 ralrimiva
 |-  ( ( R e. Ring /\ S e. K ) -> A. n e. NN ( ( coe1 ` ( A ` S ) ) ` n ) = .0. )