Step |
Hyp |
Ref |
Expression |
1 |
|
cply1coe0.k |
|- K = ( Base ` R ) |
2 |
|
cply1coe0.0 |
|- .0. = ( 0g ` R ) |
3 |
|
cply1coe0.p |
|- P = ( Poly1 ` R ) |
4 |
|
cply1coe0.b |
|- B = ( Base ` P ) |
5 |
|
cply1coe0.a |
|- A = ( algSc ` P ) |
6 |
1 2 3 4 5
|
cply1coe0 |
|- ( ( R e. Ring /\ s e. K ) -> A. n e. NN ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) |
7 |
6
|
ad4ant13 |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ s e. K ) /\ M = ( A ` s ) ) -> A. n e. NN ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) |
8 |
|
fveq2 |
|- ( M = ( A ` s ) -> ( coe1 ` M ) = ( coe1 ` ( A ` s ) ) ) |
9 |
8
|
fveq1d |
|- ( M = ( A ` s ) -> ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` s ) ) ` n ) ) |
10 |
9
|
eqeq1d |
|- ( M = ( A ` s ) -> ( ( ( coe1 ` M ) ` n ) = .0. <-> ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) ) |
11 |
10
|
ralbidv |
|- ( M = ( A ` s ) -> ( A. n e. NN ( ( coe1 ` M ) ` n ) = .0. <-> A. n e. NN ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) ) |
12 |
11
|
adantl |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ s e. K ) /\ M = ( A ` s ) ) -> ( A. n e. NN ( ( coe1 ` M ) ` n ) = .0. <-> A. n e. NN ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) ) |
13 |
7 12
|
mpbird |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ s e. K ) /\ M = ( A ` s ) ) -> A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) |
14 |
13
|
rexlimdva2 |
|- ( ( R e. Ring /\ M e. B ) -> ( E. s e. K M = ( A ` s ) -> A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) ) |
15 |
|
simpr |
|- ( ( R e. Ring /\ M e. B ) -> M e. B ) |
16 |
|
0nn0 |
|- 0 e. NN0 |
17 |
|
eqid |
|- ( coe1 ` M ) = ( coe1 ` M ) |
18 |
17 4 3 1
|
coe1fvalcl |
|- ( ( M e. B /\ 0 e. NN0 ) -> ( ( coe1 ` M ) ` 0 ) e. K ) |
19 |
15 16 18
|
sylancl |
|- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) ` 0 ) e. K ) |
20 |
19
|
adantr |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( ( coe1 ` M ) ` 0 ) e. K ) |
21 |
|
fveq2 |
|- ( s = ( ( coe1 ` M ) ` 0 ) -> ( A ` s ) = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) |
22 |
21
|
eqeq2d |
|- ( s = ( ( coe1 ` M ) ` 0 ) -> ( M = ( A ` s ) <-> M = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ) |
23 |
22
|
adantl |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) /\ s = ( ( coe1 ` M ) ` 0 ) ) -> ( M = ( A ` s ) <-> M = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ) |
24 |
|
simpl |
|- ( ( R e. Ring /\ M e. B ) -> R e. Ring ) |
25 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
26 |
3
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
27 |
3
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
28 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
29 |
5 25 26 27 28 4
|
asclf |
|- ( R e. Ring -> A : ( Base ` ( Scalar ` P ) ) --> B ) |
30 |
29
|
adantr |
|- ( ( R e. Ring /\ M e. B ) -> A : ( Base ` ( Scalar ` P ) ) --> B ) |
31 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
32 |
17 4 3 31
|
coe1fvalcl |
|- ( ( M e. B /\ 0 e. NN0 ) -> ( ( coe1 ` M ) ` 0 ) e. ( Base ` R ) ) |
33 |
15 16 32
|
sylancl |
|- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) ` 0 ) e. ( Base ` R ) ) |
34 |
3
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
35 |
34
|
eqcomd |
|- ( R e. Ring -> ( Scalar ` P ) = R ) |
36 |
35
|
fveq2d |
|- ( R e. Ring -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
37 |
36
|
adantr |
|- ( ( R e. Ring /\ M e. B ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
38 |
33 37
|
eleqtrrd |
|- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) ` 0 ) e. ( Base ` ( Scalar ` P ) ) ) |
39 |
30 38
|
ffvelrnd |
|- ( ( R e. Ring /\ M e. B ) -> ( A ` ( ( coe1 ` M ) ` 0 ) ) e. B ) |
40 |
24 15 39
|
3jca |
|- ( ( R e. Ring /\ M e. B ) -> ( R e. Ring /\ M e. B /\ ( A ` ( ( coe1 ` M ) ` 0 ) ) e. B ) ) |
41 |
40
|
adantr |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( R e. Ring /\ M e. B /\ ( A ` ( ( coe1 ` M ) ` 0 ) ) e. B ) ) |
42 |
|
simpr |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ ( ( coe1 ` M ) ` n ) = .0. ) -> ( ( coe1 ` M ) ` n ) = .0. ) |
43 |
3 5 1 2
|
coe1scl |
|- ( ( R e. Ring /\ ( ( coe1 ` M ) ` 0 ) e. K ) -> ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( ( coe1 ` M ) ` 0 ) , .0. ) ) ) |
44 |
19 43
|
syldan |
|- ( ( R e. Ring /\ M e. B ) -> ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( ( coe1 ` M ) ` 0 ) , .0. ) ) ) |
45 |
44
|
adantr |
|- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( ( coe1 ` M ) ` 0 ) , .0. ) ) ) |
46 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
47 |
46
|
neneqd |
|- ( n e. NN -> -. n = 0 ) |
48 |
47
|
adantl |
|- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> -. n = 0 ) |
49 |
48
|
adantr |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ k = n ) -> -. n = 0 ) |
50 |
|
eqeq1 |
|- ( k = n -> ( k = 0 <-> n = 0 ) ) |
51 |
50
|
notbid |
|- ( k = n -> ( -. k = 0 <-> -. n = 0 ) ) |
52 |
51
|
adantl |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ k = n ) -> ( -. k = 0 <-> -. n = 0 ) ) |
53 |
49 52
|
mpbird |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ k = n ) -> -. k = 0 ) |
54 |
53
|
iffalsed |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ k = n ) -> if ( k = 0 , ( ( coe1 ` M ) ` 0 ) , .0. ) = .0. ) |
55 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
56 |
55
|
adantl |
|- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> n e. NN0 ) |
57 |
2
|
fvexi |
|- .0. e. _V |
58 |
57
|
a1i |
|- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> .0. e. _V ) |
59 |
45 54 56 58
|
fvmptd |
|- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) = .0. ) |
60 |
59
|
eqcomd |
|- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> .0. = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
61 |
60
|
adantr |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ ( ( coe1 ` M ) ` n ) = .0. ) -> .0. = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
62 |
42 61
|
eqtrd |
|- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ ( ( coe1 ` M ) ` n ) = .0. ) -> ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
63 |
62
|
ex |
|- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> ( ( ( coe1 ` M ) ` n ) = .0. -> ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) ) |
64 |
63
|
ralimdva |
|- ( ( R e. Ring /\ M e. B ) -> ( A. n e. NN ( ( coe1 ` M ) ` n ) = .0. -> A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) ) |
65 |
64
|
imp |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
66 |
3 5 1
|
ply1sclid |
|- ( ( R e. Ring /\ ( ( coe1 ` M ) ` 0 ) e. K ) -> ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) |
67 |
19 66
|
syldan |
|- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) |
68 |
67
|
adantr |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) |
69 |
|
df-n0 |
|- NN0 = ( NN u. { 0 } ) |
70 |
69
|
raleqi |
|- ( A. n e. NN0 ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> A. n e. ( NN u. { 0 } ) ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
71 |
|
c0ex |
|- 0 e. _V |
72 |
|
fveq2 |
|- ( n = 0 -> ( ( coe1 ` M ) ` n ) = ( ( coe1 ` M ) ` 0 ) ) |
73 |
|
fveq2 |
|- ( n = 0 -> ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) |
74 |
72 73
|
eqeq12d |
|- ( n = 0 -> ( ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) ) |
75 |
74
|
ralunsn |
|- ( 0 e. _V -> ( A. n e. ( NN u. { 0 } ) ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> ( A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) /\ ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) ) ) |
76 |
71 75
|
mp1i |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( A. n e. ( NN u. { 0 } ) ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> ( A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) /\ ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) ) ) |
77 |
70 76
|
syl5bb |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( A. n e. NN0 ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> ( A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) /\ ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) ) ) |
78 |
65 68 77
|
mpbir2and |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> A. n e. NN0 ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
79 |
|
eqid |
|- ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) = ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) |
80 |
3 4 17 79
|
eqcoe1ply1eq |
|- ( ( R e. Ring /\ M e. B /\ ( A ` ( ( coe1 ` M ) ` 0 ) ) e. B ) -> ( A. n e. NN0 ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) -> M = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ) |
81 |
41 78 80
|
sylc |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> M = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) |
82 |
20 23 81
|
rspcedvd |
|- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> E. s e. K M = ( A ` s ) ) |
83 |
82
|
ex |
|- ( ( R e. Ring /\ M e. B ) -> ( A. n e. NN ( ( coe1 ` M ) ` n ) = .0. -> E. s e. K M = ( A ` s ) ) ) |
84 |
14 83
|
impbid |
|- ( ( R e. Ring /\ M e. B ) -> ( E. s e. K M = ( A ` s ) <-> A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) ) |