Step |
Hyp |
Ref |
Expression |
1 |
|
cply1mul.p |
|- P = ( Poly1 ` R ) |
2 |
|
cply1mul.b |
|- B = ( Base ` P ) |
3 |
|
cply1mul.0 |
|- .0. = ( 0g ` R ) |
4 |
|
cply1mul.m |
|- .X. = ( .r ` P ) |
5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
6 |
1 4 5 2
|
coe1mul |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
7 |
6
|
3expb |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
8 |
7
|
adantr |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
9 |
8
|
adantr |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
10 |
|
oveq2 |
|- ( s = n -> ( 0 ... s ) = ( 0 ... n ) ) |
11 |
|
fvoveq1 |
|- ( s = n -> ( ( coe1 ` G ) ` ( s - k ) ) = ( ( coe1 ` G ) ` ( n - k ) ) ) |
12 |
11
|
oveq2d |
|- ( s = n -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) |
13 |
10 12
|
mpteq12dv |
|- ( s = n -> ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) = ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) |
14 |
13
|
oveq2d |
|- ( s = n -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
15 |
14
|
adantl |
|- ( ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) /\ s = n ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
16 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
17 |
16
|
adantl |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> n e. NN0 ) |
18 |
|
ovexd |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) e. _V ) |
19 |
9 15 17 18
|
fvmptd |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( ( coe1 ` ( F .X. G ) ) ` n ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
20 |
|
r19.26 |
|- ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) <-> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) ) |
21 |
|
oveq2 |
|- ( k = 0 -> ( n - k ) = ( n - 0 ) ) |
22 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
23 |
22
|
subid1d |
|- ( n e. NN -> ( n - 0 ) = n ) |
24 |
23
|
adantr |
|- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( n - 0 ) = n ) |
25 |
21 24
|
sylan9eqr |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( n - k ) = n ) |
26 |
|
simpll |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> n e. NN ) |
27 |
25 26
|
eqeltrd |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( n - k ) e. NN ) |
28 |
|
fveqeq2 |
|- ( c = ( n - k ) -> ( ( ( coe1 ` G ) ` c ) = .0. <-> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
29 |
28
|
rspcv |
|- ( ( n - k ) e. NN -> ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
30 |
27 29
|
syl |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
31 |
|
oveq2 |
|- ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) ) |
32 |
|
simpll |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> R e. Ring ) |
33 |
|
simprl |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> F e. B ) |
34 |
|
elfznn0 |
|- ( k e. ( 0 ... n ) -> k e. NN0 ) |
35 |
34
|
adantl |
|- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> k e. NN0 ) |
36 |
35
|
adantr |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> k e. NN0 ) |
37 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
38 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
39 |
37 2 1 38
|
coe1fvalcl |
|- ( ( F e. B /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) |
40 |
33 36 39
|
syl2an |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) |
41 |
38 5 3
|
ringrz |
|- ( ( R e. Ring /\ ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) = .0. ) |
42 |
32 40 41
|
syl2anc |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) = .0. ) |
43 |
31 42
|
sylan9eqr |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) /\ ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
44 |
43
|
ex |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
45 |
44
|
expcom |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
46 |
45
|
com23 |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
47 |
30 46
|
syldc |
|- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
48 |
47
|
expd |
|- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
49 |
48
|
com24 |
|- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
50 |
49
|
adantl |
|- ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
51 |
50
|
com13 |
|- ( k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
52 |
|
neqne |
|- ( -. k = 0 -> k =/= 0 ) |
53 |
52 34
|
anim12ci |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( k e. NN0 /\ k =/= 0 ) ) |
54 |
|
elnnne0 |
|- ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) |
55 |
53 54
|
sylibr |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> k e. NN ) |
56 |
|
fveqeq2 |
|- ( c = k -> ( ( ( coe1 ` F ) ` c ) = .0. <-> ( ( coe1 ` F ) ` k ) = .0. ) ) |
57 |
56
|
rspcv |
|- ( k e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( coe1 ` F ) ` k ) = .0. ) ) |
58 |
55 57
|
syl |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( coe1 ` F ) ` k ) = .0. ) ) |
59 |
|
oveq1 |
|- ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) |
60 |
|
simpll |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> R e. Ring ) |
61 |
2
|
eleq2i |
|- ( G e. B <-> G e. ( Base ` P ) ) |
62 |
61
|
biimpi |
|- ( G e. B -> G e. ( Base ` P ) ) |
63 |
62
|
adantl |
|- ( ( F e. B /\ G e. B ) -> G e. ( Base ` P ) ) |
64 |
63
|
adantl |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> G e. ( Base ` P ) ) |
65 |
|
fznn0sub |
|- ( k e. ( 0 ... n ) -> ( n - k ) e. NN0 ) |
66 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
67 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
68 |
66 67 1 38
|
coe1fvalcl |
|- ( ( G e. ( Base ` P ) /\ ( n - k ) e. NN0 ) -> ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) |
69 |
64 65 68
|
syl2an |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) |
70 |
38 5 3
|
ringlz |
|- ( ( R e. Ring /\ ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) -> ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
71 |
60 69 70
|
syl2anc |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
72 |
59 71
|
sylan9eqr |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) /\ ( ( coe1 ` F ) ` k ) = .0. ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
73 |
72
|
ex |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
74 |
73
|
ex |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
75 |
74
|
com23 |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
76 |
75
|
a1dd |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
77 |
76
|
com14 |
|- ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
78 |
77
|
adantl |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
79 |
58 78
|
syld |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
80 |
79
|
com24 |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( n e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
81 |
80
|
ex |
|- ( -. k = 0 -> ( k e. ( 0 ... n ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( n e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) ) |
82 |
81
|
com14 |
|- ( n e. NN -> ( k e. ( 0 ... n ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) ) |
83 |
82
|
imp |
|- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
84 |
83
|
com14 |
|- ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
85 |
84
|
adantr |
|- ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
86 |
85
|
com13 |
|- ( -. k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
87 |
51 86
|
pm2.61i |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
88 |
20 87
|
syl5bi |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
89 |
88
|
imp |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
90 |
89
|
impl |
|- ( ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
91 |
90
|
mpteq2dva |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) = ( k e. ( 0 ... n ) |-> .0. ) ) |
92 |
91
|
oveq2d |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) ) |
93 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
94 |
|
ovexd |
|- ( R e. Ring -> ( 0 ... n ) e. _V ) |
95 |
3
|
gsumz |
|- ( ( R e. Mnd /\ ( 0 ... n ) e. _V ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
96 |
93 94 95
|
syl2anc |
|- ( R e. Ring -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
97 |
96
|
adantr |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
98 |
97
|
adantr |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
99 |
98
|
adantr |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
100 |
19 92 99
|
3eqtrd |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
101 |
100
|
ralrimiva |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> A. n e. NN ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
102 |
|
fveqeq2 |
|- ( c = n -> ( ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. <-> ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) ) |
103 |
102
|
cbvralvw |
|- ( A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. <-> A. n e. NN ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
104 |
101 103
|
sylibr |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. ) |
105 |
104
|
ex |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) -> A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. ) ) |