Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadumatpoly.a |
|- A = ( N Mat R ) |
2 |
|
cpmadumatpoly.b |
|- B = ( Base ` A ) |
3 |
|
cpmadumatpoly.p |
|- P = ( Poly1 ` R ) |
4 |
|
cpmadumatpoly.y |
|- Y = ( N Mat P ) |
5 |
|
cpmadumatpoly.t |
|- T = ( N matToPolyMat R ) |
6 |
|
cpmadumatpoly.r |
|- .X. = ( .r ` Y ) |
7 |
|
cpmadumatpoly.m0 |
|- .- = ( -g ` Y ) |
8 |
|
cpmadumatpoly.0 |
|- .0. = ( 0g ` Y ) |
9 |
|
cpmadumatpoly.g |
|- G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) |
10 |
|
cpmadumatpoly.s |
|- S = ( N ConstPolyMat R ) |
11 |
|
cpmadumatpoly.m1 |
|- .x. = ( .s ` Y ) |
12 |
|
cpmadumatpoly.1 |
|- .1. = ( 1r ` Y ) |
13 |
|
cpmadumatpoly.z |
|- Z = ( var1 ` R ) |
14 |
|
cpmadumatpoly.d |
|- D = ( ( Z .x. .1. ) .- ( T ` M ) ) |
15 |
|
cpmadumatpoly.j |
|- J = ( N maAdju P ) |
16 |
|
cpmadumatpoly.w |
|- W = ( Base ` Y ) |
17 |
|
cpmadumatpoly.q |
|- Q = ( Poly1 ` A ) |
18 |
|
cpmadumatpoly.x |
|- X = ( var1 ` A ) |
19 |
|
cpmadumatpoly.m2 |
|- .* = ( .s ` Q ) |
20 |
|
cpmadumatpoly.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
21 |
|
cpmadumatpoly.u |
|- U = ( N cPolyMatToMat R ) |
22 |
|
simp1 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> N e. Fin ) |
23 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
24 |
23
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. Ring ) |
25 |
22 24
|
jca |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( N e. Fin /\ R e. Ring ) ) |
27 |
1 2 10 21
|
cpm2mf |
|- ( ( N e. Fin /\ R e. Ring ) -> U : S --> B ) |
28 |
26 27
|
syl |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> U : S --> B ) |
29 |
1 2 3 4 6 7 8 5 9 10
|
chfacfisfcpmat |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> S ) |
30 |
23 29
|
syl3anl2 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> S ) |
31 |
30
|
anassrs |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> G : NN0 --> S ) |
32 |
|
fco |
|- ( ( U : S --> B /\ G : NN0 --> S ) -> ( U o. G ) : NN0 --> B ) |
33 |
28 31 32
|
syl2anc |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U o. G ) : NN0 --> B ) |
34 |
2
|
fvexi |
|- B e. _V |
35 |
|
nn0ex |
|- NN0 e. _V |
36 |
34 35
|
pm3.2i |
|- ( B e. _V /\ NN0 e. _V ) |
37 |
|
elmapg |
|- ( ( B e. _V /\ NN0 e. _V ) -> ( ( U o. G ) e. ( B ^m NN0 ) <-> ( U o. G ) : NN0 --> B ) ) |
38 |
36 37
|
mp1i |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( ( U o. G ) e. ( B ^m NN0 ) <-> ( U o. G ) : NN0 --> B ) ) |
39 |
33 38
|
mpbird |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U o. G ) e. ( B ^m NN0 ) ) |