Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadumatpoly.a |
|- A = ( N Mat R ) |
2 |
|
cpmadumatpoly.b |
|- B = ( Base ` A ) |
3 |
|
cpmadumatpoly.p |
|- P = ( Poly1 ` R ) |
4 |
|
cpmadumatpoly.y |
|- Y = ( N Mat P ) |
5 |
|
cpmadumatpoly.t |
|- T = ( N matToPolyMat R ) |
6 |
|
cpmadumatpoly.r |
|- .X. = ( .r ` Y ) |
7 |
|
cpmadumatpoly.m0 |
|- .- = ( -g ` Y ) |
8 |
|
cpmadumatpoly.0 |
|- .0. = ( 0g ` Y ) |
9 |
|
cpmadumatpoly.g |
|- G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) |
10 |
|
cpmadumatpoly.s |
|- S = ( N ConstPolyMat R ) |
11 |
|
cpmadumatpoly.m1 |
|- .x. = ( .s ` Y ) |
12 |
|
cpmadumatpoly.1 |
|- .1. = ( 1r ` Y ) |
13 |
|
cpmadumatpoly.z |
|- Z = ( var1 ` R ) |
14 |
|
cpmadumatpoly.d |
|- D = ( ( Z .x. .1. ) .- ( T ` M ) ) |
15 |
|
cpmadumatpoly.j |
|- J = ( N maAdju P ) |
16 |
|
cpmadumatpoly.w |
|- W = ( Base ` Y ) |
17 |
|
cpmadumatpoly.q |
|- Q = ( Poly1 ` A ) |
18 |
|
cpmadumatpoly.x |
|- X = ( var1 ` A ) |
19 |
|
cpmadumatpoly.m2 |
|- .* = ( .s ` Q ) |
20 |
|
cpmadumatpoly.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
21 |
|
cpmadumatpoly.u |
|- U = ( N cPolyMatToMat R ) |
22 |
|
fvexd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( 0g ` A ) e. _V ) |
23 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
24 |
23
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
25 |
24
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( N e. Fin /\ R e. Ring ) ) |
27 |
10 3 4
|
0elcpmat |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` Y ) e. S ) |
28 |
26 27
|
syl |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( 0g ` Y ) e. S ) |
29 |
1 2 3 4 6 7 8 5 9 10
|
chfacfisfcpmat |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> S ) |
30 |
23 29
|
syl3anl2 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> S ) |
31 |
30
|
anassrs |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> G : NN0 --> S ) |
32 |
1 2 10 21
|
cpm2mf |
|- ( ( N e. Fin /\ R e. Ring ) -> U : S --> B ) |
33 |
26 32
|
syl |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> U : S --> B ) |
34 |
|
ssidd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> S C_ S ) |
35 |
|
nn0ex |
|- NN0 e. _V |
36 |
35
|
a1i |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> NN0 e. _V ) |
37 |
10
|
ovexi |
|- S e. _V |
38 |
37
|
a1i |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> S e. _V ) |
39 |
1 2 3 4 6 7 8 5 9
|
chfacffsupp |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G finSupp ( 0g ` Y ) ) |
40 |
39
|
anassrs |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> G finSupp ( 0g ` Y ) ) |
41 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
42 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
43 |
1 21 3 4 41 42
|
m2cpminv0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( U ` ( 0g ` Y ) ) = ( 0g ` A ) ) |
44 |
23 43
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> ( U ` ( 0g ` Y ) ) = ( 0g ` A ) ) |
45 |
44
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( U ` ( 0g ` Y ) ) = ( 0g ` A ) ) |
46 |
45
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U ` ( 0g ` Y ) ) = ( 0g ` A ) ) |
47 |
22 28 31 33 34 36 38 40 46
|
fsuppcor |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U o. G ) finSupp ( 0g ` A ) ) |