Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadurid.a |
|- A = ( N Mat R ) |
2 |
|
cpmadurid.b |
|- B = ( Base ` A ) |
3 |
|
cpmadurid.c |
|- C = ( N CharPlyMat R ) |
4 |
|
cpmadurid.p |
|- P = ( Poly1 ` R ) |
5 |
|
cpmadurid.y |
|- Y = ( N Mat P ) |
6 |
|
cpmadurid.x |
|- X = ( var1 ` R ) |
7 |
|
cpmadurid.t |
|- T = ( N matToPolyMat R ) |
8 |
|
cpmadurid.s |
|- .- = ( -g ` Y ) |
9 |
|
cpmadurid.m1 |
|- .x. = ( .s ` Y ) |
10 |
|
cpmadurid.1 |
|- .1. = ( 1r ` Y ) |
11 |
|
cpmadurid.i |
|- I = ( ( X .x. .1. ) .- ( T ` M ) ) |
12 |
|
cpmadurid.j |
|- J = ( N maAdju P ) |
13 |
|
cpmadurid.m2 |
|- .X. = ( .r ` Y ) |
14 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
15 |
1 2 4 5 6 7 8 9 10 11
|
chmatcl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> I e. ( Base ` Y ) ) |
16 |
14 15
|
syl3an2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> I e. ( Base ` Y ) ) |
17 |
4
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
18 |
17
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. CRing ) |
19 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
20 |
|
eqid |
|- ( N maDet P ) = ( N maDet P ) |
21 |
5 19 12 20 10 13 9
|
madurid |
|- ( ( I e. ( Base ` Y ) /\ P e. CRing ) -> ( I .X. ( J ` I ) ) = ( ( ( N maDet P ) ` I ) .x. .1. ) ) |
22 |
16 18 21
|
syl2anc |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I .X. ( J ` I ) ) = ( ( ( N maDet P ) ` I ) .x. .1. ) ) |
23 |
3 1 2 4 5 20 8 6 9 7 10
|
chpmatval |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) |
24 |
11
|
a1i |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> I = ( ( X .x. .1. ) .- ( T ` M ) ) ) |
25 |
24
|
eqcomd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( X .x. .1. ) .- ( T ` M ) ) = I ) |
26 |
25
|
fveq2d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) = ( ( N maDet P ) ` I ) ) |
27 |
23 26
|
eqtr2d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( N maDet P ) ` I ) = ( C ` M ) ) |
28 |
27
|
oveq1d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( N maDet P ) ` I ) .x. .1. ) = ( ( C ` M ) .x. .1. ) ) |
29 |
22 28
|
eqtrd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I .X. ( J ` I ) ) = ( ( C ` M ) .x. .1. ) ) |