Metamath Proof Explorer


Theorem cpmadurid

Description: The right-hand fundamental relation of the adjugate (see madurid ) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019)

Ref Expression
Hypotheses cpmadurid.a
|- A = ( N Mat R )
cpmadurid.b
|- B = ( Base ` A )
cpmadurid.c
|- C = ( N CharPlyMat R )
cpmadurid.p
|- P = ( Poly1 ` R )
cpmadurid.y
|- Y = ( N Mat P )
cpmadurid.x
|- X = ( var1 ` R )
cpmadurid.t
|- T = ( N matToPolyMat R )
cpmadurid.s
|- .- = ( -g ` Y )
cpmadurid.m1
|- .x. = ( .s ` Y )
cpmadurid.1
|- .1. = ( 1r ` Y )
cpmadurid.i
|- I = ( ( X .x. .1. ) .- ( T ` M ) )
cpmadurid.j
|- J = ( N maAdju P )
cpmadurid.m2
|- .X. = ( .r ` Y )
Assertion cpmadurid
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I .X. ( J ` I ) ) = ( ( C ` M ) .x. .1. ) )

Proof

Step Hyp Ref Expression
1 cpmadurid.a
 |-  A = ( N Mat R )
2 cpmadurid.b
 |-  B = ( Base ` A )
3 cpmadurid.c
 |-  C = ( N CharPlyMat R )
4 cpmadurid.p
 |-  P = ( Poly1 ` R )
5 cpmadurid.y
 |-  Y = ( N Mat P )
6 cpmadurid.x
 |-  X = ( var1 ` R )
7 cpmadurid.t
 |-  T = ( N matToPolyMat R )
8 cpmadurid.s
 |-  .- = ( -g ` Y )
9 cpmadurid.m1
 |-  .x. = ( .s ` Y )
10 cpmadurid.1
 |-  .1. = ( 1r ` Y )
11 cpmadurid.i
 |-  I = ( ( X .x. .1. ) .- ( T ` M ) )
12 cpmadurid.j
 |-  J = ( N maAdju P )
13 cpmadurid.m2
 |-  .X. = ( .r ` Y )
14 crngring
 |-  ( R e. CRing -> R e. Ring )
15 1 2 4 5 6 7 8 9 10 11 chmatcl
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> I e. ( Base ` Y ) )
16 14 15 syl3an2
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> I e. ( Base ` Y ) )
17 4 ply1crng
 |-  ( R e. CRing -> P e. CRing )
18 17 3ad2ant2
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. CRing )
19 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
20 eqid
 |-  ( N maDet P ) = ( N maDet P )
21 5 19 12 20 10 13 9 madurid
 |-  ( ( I e. ( Base ` Y ) /\ P e. CRing ) -> ( I .X. ( J ` I ) ) = ( ( ( N maDet P ) ` I ) .x. .1. ) )
22 16 18 21 syl2anc
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I .X. ( J ` I ) ) = ( ( ( N maDet P ) ` I ) .x. .1. ) )
23 3 1 2 4 5 20 8 6 9 7 10 chpmatval
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) )
24 11 a1i
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> I = ( ( X .x. .1. ) .- ( T ` M ) ) )
25 24 eqcomd
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( X .x. .1. ) .- ( T ` M ) ) = I )
26 25 fveq2d
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) = ( ( N maDet P ) ` I ) )
27 23 26 eqtr2d
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( N maDet P ) ` I ) = ( C ` M ) )
28 27 oveq1d
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( N maDet P ) ` I ) .x. .1. ) = ( ( C ` M ) .x. .1. ) )
29 22 28 eqtrd
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I .X. ( J ` I ) ) = ( ( C ` M ) .x. .1. ) )