Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadugsum.a |
|- A = ( N Mat R ) |
2 |
|
cpmadugsum.b |
|- B = ( Base ` A ) |
3 |
|
cpmadugsum.p |
|- P = ( Poly1 ` R ) |
4 |
|
cpmadugsum.y |
|- Y = ( N Mat P ) |
5 |
|
cpmadugsum.t |
|- T = ( N matToPolyMat R ) |
6 |
|
cpmadugsum.x |
|- X = ( var1 ` R ) |
7 |
|
cpmadugsum.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
8 |
|
cpmadugsum.m |
|- .x. = ( .s ` Y ) |
9 |
|
cpmadugsum.r |
|- .X. = ( .r ` Y ) |
10 |
|
cpmadugsum.1 |
|- .1. = ( 1r ` Y ) |
11 |
|
cpmadugsum.g |
|- .+ = ( +g ` Y ) |
12 |
|
cpmadugsum.s |
|- .- = ( -g ` Y ) |
13 |
|
cpmadugsum.i |
|- I = ( ( X .x. .1. ) .- ( T ` M ) ) |
14 |
|
cpmadugsum.j |
|- J = ( N maAdju P ) |
15 |
|
cpmadugsum.0 |
|- .0. = ( 0g ` Y ) |
16 |
|
cpmadugsum.g2 |
|- G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) |
17 |
|
cpmidgsum2.c |
|- C = ( N CharPlyMat R ) |
18 |
|
cpmidgsum2.k |
|- K = ( C ` M ) |
19 |
|
cpmidg2sum.u |
|- U = ( algSc ` P ) |
20 |
|
eqid |
|- ( K .x. .1. ) = ( K .x. .1. ) |
21 |
1 2 3 4 6 7 8 10 19 17 18 20
|
cpmidgsum |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) ) |
22 |
21
|
eqcomd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( K .x. .1. ) ) |
23 |
22
|
ad3antrrr |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( K .x. .1. ) ) |
24 |
|
simpr |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) |
25 |
23 24
|
eqtrd |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20
|
cpmidgsum2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) |
27 |
25 26
|
reximddv2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) |