Metamath Proof Explorer


Theorem cpmidg2sum

Description: Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a
|- A = ( N Mat R )
cpmadugsum.b
|- B = ( Base ` A )
cpmadugsum.p
|- P = ( Poly1 ` R )
cpmadugsum.y
|- Y = ( N Mat P )
cpmadugsum.t
|- T = ( N matToPolyMat R )
cpmadugsum.x
|- X = ( var1 ` R )
cpmadugsum.e
|- .^ = ( .g ` ( mulGrp ` P ) )
cpmadugsum.m
|- .x. = ( .s ` Y )
cpmadugsum.r
|- .X. = ( .r ` Y )
cpmadugsum.1
|- .1. = ( 1r ` Y )
cpmadugsum.g
|- .+ = ( +g ` Y )
cpmadugsum.s
|- .- = ( -g ` Y )
cpmadugsum.i
|- I = ( ( X .x. .1. ) .- ( T ` M ) )
cpmadugsum.j
|- J = ( N maAdju P )
cpmadugsum.0
|- .0. = ( 0g ` Y )
cpmadugsum.g2
|- G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) )
cpmidgsum2.c
|- C = ( N CharPlyMat R )
cpmidgsum2.k
|- K = ( C ` M )
cpmidg2sum.u
|- U = ( algSc ` P )
Assertion cpmidg2sum
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmadugsum.a
 |-  A = ( N Mat R )
2 cpmadugsum.b
 |-  B = ( Base ` A )
3 cpmadugsum.p
 |-  P = ( Poly1 ` R )
4 cpmadugsum.y
 |-  Y = ( N Mat P )
5 cpmadugsum.t
 |-  T = ( N matToPolyMat R )
6 cpmadugsum.x
 |-  X = ( var1 ` R )
7 cpmadugsum.e
 |-  .^ = ( .g ` ( mulGrp ` P ) )
8 cpmadugsum.m
 |-  .x. = ( .s ` Y )
9 cpmadugsum.r
 |-  .X. = ( .r ` Y )
10 cpmadugsum.1
 |-  .1. = ( 1r ` Y )
11 cpmadugsum.g
 |-  .+ = ( +g ` Y )
12 cpmadugsum.s
 |-  .- = ( -g ` Y )
13 cpmadugsum.i
 |-  I = ( ( X .x. .1. ) .- ( T ` M ) )
14 cpmadugsum.j
 |-  J = ( N maAdju P )
15 cpmadugsum.0
 |-  .0. = ( 0g ` Y )
16 cpmadugsum.g2
 |-  G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) )
17 cpmidgsum2.c
 |-  C = ( N CharPlyMat R )
18 cpmidgsum2.k
 |-  K = ( C ` M )
19 cpmidg2sum.u
 |-  U = ( algSc ` P )
20 eqid
 |-  ( K .x. .1. ) = ( K .x. .1. )
21 1 2 3 4 6 7 8 10 19 17 18 20 cpmidgsum
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) )
22 21 eqcomd
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( K .x. .1. ) )
23 22 ad3antrrr
 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( K .x. .1. ) )
24 simpr
 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) )
25 23 24 eqtrd
 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) ) -> ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 cpmidgsum2
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( K .x. .1. ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) )
27 25 26 reximddv2
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` i ) ) .x. .1. ) ) ) ) = ( Y gsum ( i e. NN0 |-> ( ( i .^ X ) .x. ( G ` i ) ) ) ) )