Metamath Proof Explorer


Theorem cpmidgsum

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a
|- A = ( N Mat R )
cpmidgsum.b
|- B = ( Base ` A )
cpmidgsum.p
|- P = ( Poly1 ` R )
cpmidgsum.y
|- Y = ( N Mat P )
cpmidgsum.x
|- X = ( var1 ` R )
cpmidgsum.e
|- .^ = ( .g ` ( mulGrp ` P ) )
cpmidgsum.m
|- .x. = ( .s ` Y )
cpmidgsum.1
|- .1. = ( 1r ` Y )
cpmidgsum.u
|- U = ( algSc ` P )
cpmidgsum.c
|- C = ( N CharPlyMat R )
cpmidgsum.k
|- K = ( C ` M )
cpmidgsum.h
|- H = ( K .x. .1. )
Assertion cpmidgsum
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmidgsum.a
 |-  A = ( N Mat R )
2 cpmidgsum.b
 |-  B = ( Base ` A )
3 cpmidgsum.p
 |-  P = ( Poly1 ` R )
4 cpmidgsum.y
 |-  Y = ( N Mat P )
5 cpmidgsum.x
 |-  X = ( var1 ` R )
6 cpmidgsum.e
 |-  .^ = ( .g ` ( mulGrp ` P ) )
7 cpmidgsum.m
 |-  .x. = ( .s ` Y )
8 cpmidgsum.1
 |-  .1. = ( 1r ` Y )
9 cpmidgsum.u
 |-  U = ( algSc ` P )
10 cpmidgsum.c
 |-  C = ( N CharPlyMat R )
11 cpmidgsum.k
 |-  K = ( C ` M )
12 cpmidgsum.h
 |-  H = ( K .x. .1. )
13 eqid
 |-  ( Base ` P ) = ( Base ` P )
14 10 1 2 3 13 chpmatply1
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) )
15 11 14 eqeltrid
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) )
16 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
17 eqid
 |-  ( N matToPolyMat R ) = ( N matToPolyMat R )
18 eqid
 |-  ( Base ` R ) = ( Base ` R )
19 3 4 16 7 6 5 17 1 2 9 18 13 9 8 12 pmatcollpwscmat
 |-  ( ( N e. Fin /\ R e. CRing /\ K e. ( Base ` P ) ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) )
20 15 19 syld3an3
 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) )