Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
|- A = ( N Mat R ) |
2 |
|
cpmidgsum.b |
|- B = ( Base ` A ) |
3 |
|
cpmidgsum.p |
|- P = ( Poly1 ` R ) |
4 |
|
cpmidgsum.y |
|- Y = ( N Mat P ) |
5 |
|
cpmidgsum.x |
|- X = ( var1 ` R ) |
6 |
|
cpmidgsum.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
7 |
|
cpmidgsum.m |
|- .x. = ( .s ` Y ) |
8 |
|
cpmidgsum.1 |
|- .1. = ( 1r ` Y ) |
9 |
|
cpmidgsum.u |
|- U = ( algSc ` P ) |
10 |
|
cpmidgsum.c |
|- C = ( N CharPlyMat R ) |
11 |
|
cpmidgsum.k |
|- K = ( C ` M ) |
12 |
|
cpmidgsum.h |
|- H = ( K .x. .1. ) |
13 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
14 |
10 1 2 3 13
|
chpmatply1 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) |
15 |
11 14
|
eqeltrid |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) ) |
16 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
17 |
|
eqid |
|- ( N matToPolyMat R ) = ( N matToPolyMat R ) |
18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
19 |
3 4 16 7 6 5 17 1 2 9 18 13 9 8 12
|
pmatcollpwscmat |
|- ( ( N e. Fin /\ R e. CRing /\ K e. ( Base ` P ) ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) ) |
20 |
15 19
|
syld3an3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) ) |