Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
|- A = ( N Mat R ) |
2 |
|
cpmidgsum.b |
|- B = ( Base ` A ) |
3 |
|
cpmidgsum.p |
|- P = ( Poly1 ` R ) |
4 |
|
cpmidgsum.y |
|- Y = ( N Mat P ) |
5 |
|
cpmidgsum.x |
|- X = ( var1 ` R ) |
6 |
|
cpmidgsum.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
7 |
|
cpmidgsum.m |
|- .x. = ( .s ` Y ) |
8 |
|
cpmidgsum.1 |
|- .1. = ( 1r ` Y ) |
9 |
|
cpmidgsum.u |
|- U = ( algSc ` P ) |
10 |
|
cpmidgsum.c |
|- C = ( N CharPlyMat R ) |
11 |
|
cpmidgsum.k |
|- K = ( C ` M ) |
12 |
|
cpmidgsum.h |
|- H = ( K .x. .1. ) |
13 |
|
cpmidgsumm2pm.o |
|- O = ( 1r ` A ) |
14 |
|
cpmidgsumm2pm.m |
|- .* = ( .s ` A ) |
15 |
|
cpmidgsumm2pm.t |
|- T = ( N matToPolyMat R ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cpmidgsum |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) ) |
17 |
|
3simpa |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. CRing ) ) |
18 |
17
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( N e. Fin /\ R e. CRing ) ) |
19 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
20 |
10 1 2 3 19
|
chpmatply1 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) |
21 |
11 20
|
eqeltrid |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) ) |
22 |
|
eqid |
|- ( coe1 ` K ) = ( coe1 ` K ) |
23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
24 |
22 19 3 23
|
coe1fvalcl |
|- ( ( K e. ( Base ` P ) /\ n e. NN0 ) -> ( ( coe1 ` K ) ` n ) e. ( Base ` R ) ) |
25 |
21 24
|
sylan |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( coe1 ` K ) ` n ) e. ( Base ` R ) ) |
26 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
27 |
26
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
28 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
29 |
2 13
|
ringidcl |
|- ( A e. Ring -> O e. B ) |
30 |
27 28 29
|
3syl |
|- ( ( N e. Fin /\ R e. CRing ) -> O e. B ) |
31 |
30
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> O e. B ) |
32 |
31
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> O e. B ) |
33 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
34 |
15 1 2 3 4 33 23 9 14 7
|
mat2pmatlin |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ ( ( ( coe1 ` K ) ` n ) e. ( Base ` R ) /\ O e. B ) ) -> ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) = ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. ( T ` O ) ) ) |
35 |
18 25 32 34
|
syl12anc |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) = ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. ( T ` O ) ) ) |
36 |
15 1 2 3 4 33
|
mat2pmatrhm |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingHom Y ) ) |
37 |
13 8
|
rhm1 |
|- ( T e. ( A RingHom Y ) -> ( T ` O ) = .1. ) |
38 |
17 36 37
|
3syl |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( T ` O ) = .1. ) |
39 |
38
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( T ` O ) = .1. ) |
40 |
39
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. ( T ` O ) ) = ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) |
41 |
35 40
|
eqtr2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) = ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) |
42 |
41
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) = ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) |
43 |
42
|
mpteq2dva |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) = ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) |
44 |
43
|
oveq2d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( ( U ` ( ( coe1 ` K ) ` n ) ) .x. .1. ) ) ) ) = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) ) |
45 |
16 44
|
eqtrd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) ) |