Description: Lemma 1 for cpmidpmat . (Contributed by AV, 13-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cpmidgsum.a | |- A = ( N Mat R ) |
|
cpmidgsum.b | |- B = ( Base ` A ) |
||
cpmidgsum.p | |- P = ( Poly1 ` R ) |
||
cpmidgsum.y | |- Y = ( N Mat P ) |
||
cpmidgsum.x | |- X = ( var1 ` R ) |
||
cpmidgsum.e | |- .^ = ( .g ` ( mulGrp ` P ) ) |
||
cpmidgsum.m | |- .x. = ( .s ` Y ) |
||
cpmidgsum.1 | |- .1. = ( 1r ` Y ) |
||
cpmidgsum.u | |- U = ( algSc ` P ) |
||
cpmidgsum.c | |- C = ( N CharPlyMat R ) |
||
cpmidgsum.k | |- K = ( C ` M ) |
||
cpmidgsum.h | |- H = ( K .x. .1. ) |
||
cpmidgsumm2pm.o | |- O = ( 1r ` A ) |
||
cpmidgsumm2pm.m | |- .* = ( .s ` A ) |
||
cpmidgsumm2pm.t | |- T = ( N matToPolyMat R ) |
||
cpmidpmat.g | |- G = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) |
||
Assertion | cpmidpmatlem1 | |- ( L e. NN0 -> ( G ` L ) = ( ( ( coe1 ` K ) ` L ) .* O ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmidgsum.a | |- A = ( N Mat R ) |
|
2 | cpmidgsum.b | |- B = ( Base ` A ) |
|
3 | cpmidgsum.p | |- P = ( Poly1 ` R ) |
|
4 | cpmidgsum.y | |- Y = ( N Mat P ) |
|
5 | cpmidgsum.x | |- X = ( var1 ` R ) |
|
6 | cpmidgsum.e | |- .^ = ( .g ` ( mulGrp ` P ) ) |
|
7 | cpmidgsum.m | |- .x. = ( .s ` Y ) |
|
8 | cpmidgsum.1 | |- .1. = ( 1r ` Y ) |
|
9 | cpmidgsum.u | |- U = ( algSc ` P ) |
|
10 | cpmidgsum.c | |- C = ( N CharPlyMat R ) |
|
11 | cpmidgsum.k | |- K = ( C ` M ) |
|
12 | cpmidgsum.h | |- H = ( K .x. .1. ) |
|
13 | cpmidgsumm2pm.o | |- O = ( 1r ` A ) |
|
14 | cpmidgsumm2pm.m | |- .* = ( .s ` A ) |
|
15 | cpmidgsumm2pm.t | |- T = ( N matToPolyMat R ) |
|
16 | cpmidpmat.g | |- G = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) |
|
17 | fveq2 | |- ( k = L -> ( ( coe1 ` K ) ` k ) = ( ( coe1 ` K ) ` L ) ) |
|
18 | 17 | oveq1d | |- ( k = L -> ( ( ( coe1 ` K ) ` k ) .* O ) = ( ( ( coe1 ` K ) ` L ) .* O ) ) |
19 | ovex | |- ( ( ( coe1 ` K ) ` L ) .* O ) e. _V |
|
20 | 18 16 19 | fvmpt | |- ( L e. NN0 -> ( G ` L ) = ( ( ( coe1 ` K ) ` L ) .* O ) ) |