Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
|- A = ( N Mat R ) |
2 |
|
cpmidgsum.b |
|- B = ( Base ` A ) |
3 |
|
cpmidgsum.p |
|- P = ( Poly1 ` R ) |
4 |
|
cpmidgsum.y |
|- Y = ( N Mat P ) |
5 |
|
cpmidgsum.x |
|- X = ( var1 ` R ) |
6 |
|
cpmidgsum.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
7 |
|
cpmidgsum.m |
|- .x. = ( .s ` Y ) |
8 |
|
cpmidgsum.1 |
|- .1. = ( 1r ` Y ) |
9 |
|
cpmidgsum.u |
|- U = ( algSc ` P ) |
10 |
|
cpmidgsum.c |
|- C = ( N CharPlyMat R ) |
11 |
|
cpmidgsum.k |
|- K = ( C ` M ) |
12 |
|
cpmidgsum.h |
|- H = ( K .x. .1. ) |
13 |
|
cpmidgsumm2pm.o |
|- O = ( 1r ` A ) |
14 |
|
cpmidgsumm2pm.m |
|- .* = ( .s ` A ) |
15 |
|
cpmidgsumm2pm.t |
|- T = ( N matToPolyMat R ) |
16 |
|
cpmidpmat.g |
|- G = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) |
17 |
|
simpl1 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ k e. NN0 ) -> N e. Fin ) |
18 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
19 |
18
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. Ring ) |
20 |
19
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ k e. NN0 ) -> R e. Ring ) |
21 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
22 |
10 1 2 3 21
|
chpmatply1 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) |
23 |
11 22
|
eqeltrid |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) ) |
24 |
|
eqid |
|- ( coe1 ` K ) = ( coe1 ` K ) |
25 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
26 |
24 21 3 25
|
coe1fvalcl |
|- ( ( K e. ( Base ` P ) /\ k e. NN0 ) -> ( ( coe1 ` K ) ` k ) e. ( Base ` R ) ) |
27 |
23 26
|
sylan |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ k e. NN0 ) -> ( ( coe1 ` K ) ` k ) e. ( Base ` R ) ) |
28 |
18
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
29 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
30 |
2 13
|
ringidcl |
|- ( A e. Ring -> O e. B ) |
31 |
28 29 30
|
3syl |
|- ( ( N e. Fin /\ R e. CRing ) -> O e. B ) |
32 |
31
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> O e. B ) |
33 |
32
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ k e. NN0 ) -> O e. B ) |
34 |
25 1 2 14
|
matvscl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( ( ( coe1 ` K ) ` k ) e. ( Base ` R ) /\ O e. B ) ) -> ( ( ( coe1 ` K ) ` k ) .* O ) e. B ) |
35 |
17 20 27 33 34
|
syl22anc |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ k e. NN0 ) -> ( ( ( coe1 ` K ) ` k ) .* O ) e. B ) |
36 |
35 16
|
fmptd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> G : NN0 --> B ) |
37 |
2
|
fvexi |
|- B e. _V |
38 |
|
nn0ex |
|- NN0 e. _V |
39 |
37 38
|
pm3.2i |
|- ( B e. _V /\ NN0 e. _V ) |
40 |
|
elmapg |
|- ( ( B e. _V /\ NN0 e. _V ) -> ( G e. ( B ^m NN0 ) <-> G : NN0 --> B ) ) |
41 |
39 40
|
mp1i |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( G e. ( B ^m NN0 ) <-> G : NN0 --> B ) ) |
42 |
36 41
|
mpbird |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> G e. ( B ^m NN0 ) ) |