Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
|- A = ( N Mat R ) |
2 |
|
cpmidgsum.b |
|- B = ( Base ` A ) |
3 |
|
cpmidgsum.p |
|- P = ( Poly1 ` R ) |
4 |
|
cpmidgsum.y |
|- Y = ( N Mat P ) |
5 |
|
cpmidgsum.x |
|- X = ( var1 ` R ) |
6 |
|
cpmidgsum.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
7 |
|
cpmidgsum.m |
|- .x. = ( .s ` Y ) |
8 |
|
cpmidgsum.1 |
|- .1. = ( 1r ` Y ) |
9 |
|
cpmidgsum.u |
|- U = ( algSc ` P ) |
10 |
|
cpmidgsum.c |
|- C = ( N CharPlyMat R ) |
11 |
|
cpmidgsum.k |
|- K = ( C ` M ) |
12 |
|
cpmidgsum.h |
|- H = ( K .x. .1. ) |
13 |
|
cpmidgsumm2pm.o |
|- O = ( 1r ` A ) |
14 |
|
cpmidgsumm2pm.m |
|- .* = ( .s ` A ) |
15 |
|
cpmidgsumm2pm.t |
|- T = ( N matToPolyMat R ) |
16 |
|
cpmidpmat.g |
|- G = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) |
17 |
|
fvexd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( 0g ` A ) e. _V ) |
18 |
|
ovexd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ k e. NN0 ) -> ( ( ( coe1 ` K ) ` k ) .* O ) e. _V ) |
19 |
|
fveq2 |
|- ( k = l -> ( ( coe1 ` K ) ` k ) = ( ( coe1 ` K ) ` l ) ) |
20 |
19
|
oveq1d |
|- ( k = l -> ( ( ( coe1 ` K ) ` k ) .* O ) = ( ( ( coe1 ` K ) ` l ) .* O ) ) |
21 |
|
fvexd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( 0g ` R ) e. _V ) |
22 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
23 |
10 1 2 3 22
|
chpmatply1 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) |
24 |
11 23
|
eqeltrid |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) ) |
25 |
|
eqid |
|- ( coe1 ` K ) = ( coe1 ` K ) |
26 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
27 |
25 22 3 26
|
coe1fvalcl |
|- ( ( K e. ( Base ` P ) /\ n e. NN0 ) -> ( ( coe1 ` K ) ` n ) e. ( Base ` R ) ) |
28 |
24 27
|
sylan |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( coe1 ` K ) ` n ) e. ( Base ` R ) ) |
29 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
30 |
29
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. Ring ) |
31 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
32 |
3 22 31
|
mptcoe1fsupp |
|- ( ( R e. Ring /\ K e. ( Base ` P ) ) -> ( n e. NN0 |-> ( ( coe1 ` K ) ` n ) ) finSupp ( 0g ` R ) ) |
33 |
30 24 32
|
syl2anc |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( n e. NN0 |-> ( ( coe1 ` K ) ` n ) ) finSupp ( 0g ` R ) ) |
34 |
21 28 33
|
mptnn0fsuppr |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN0 A. l e. NN0 ( s < l -> [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) ) |
35 |
|
csbfv |
|- [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( ( coe1 ` K ) ` l ) |
36 |
35
|
a1i |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) -> [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( ( coe1 ` K ) ` l ) ) |
37 |
36
|
eqeq1d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) -> ( [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) <-> ( ( coe1 ` K ) ` l ) = ( 0g ` R ) ) ) |
38 |
37
|
biimpa |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) /\ [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> ( ( coe1 ` K ) ` l ) = ( 0g ` R ) ) |
39 |
1
|
matsca2 |
|- ( ( N e. Fin /\ R e. CRing ) -> R = ( Scalar ` A ) ) |
40 |
39
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R = ( Scalar ` A ) ) |
41 |
40
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) /\ [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> R = ( Scalar ` A ) ) |
42 |
41
|
fveq2d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) /\ [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` A ) ) ) |
43 |
38 42
|
eqtrd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) /\ [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> ( ( coe1 ` K ) ` l ) = ( 0g ` ( Scalar ` A ) ) ) |
44 |
43
|
oveq1d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) /\ [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> ( ( ( coe1 ` K ) ` l ) .* O ) = ( ( 0g ` ( Scalar ` A ) ) .* O ) ) |
45 |
1
|
matlmod |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
46 |
29 45
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. LMod ) |
47 |
46
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> A e. LMod ) |
48 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
49 |
29 48
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
50 |
2 13
|
ringidcl |
|- ( A e. Ring -> O e. B ) |
51 |
49 50
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> O e. B ) |
52 |
51
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> O e. B ) |
53 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
54 |
|
eqid |
|- ( 0g ` ( Scalar ` A ) ) = ( 0g ` ( Scalar ` A ) ) |
55 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
56 |
2 53 14 54 55
|
lmod0vs |
|- ( ( A e. LMod /\ O e. B ) -> ( ( 0g ` ( Scalar ` A ) ) .* O ) = ( 0g ` A ) ) |
57 |
47 52 56
|
syl2anc |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( 0g ` ( Scalar ` A ) ) .* O ) = ( 0g ` A ) ) |
58 |
57
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) /\ [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> ( ( 0g ` ( Scalar ` A ) ) .* O ) = ( 0g ` A ) ) |
59 |
44 58
|
eqtrd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) /\ [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> ( ( ( coe1 ` K ) ` l ) .* O ) = ( 0g ` A ) ) |
60 |
59
|
ex |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) -> ( [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) -> ( ( ( coe1 ` K ) ` l ) .* O ) = ( 0g ` A ) ) ) |
61 |
60
|
imim2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) -> ( ( s < l -> [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> ( s < l -> ( ( ( coe1 ` K ) ` l ) .* O ) = ( 0g ` A ) ) ) ) |
62 |
61
|
ralimdva |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( A. l e. NN0 ( s < l -> [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> A. l e. NN0 ( s < l -> ( ( ( coe1 ` K ) ` l ) .* O ) = ( 0g ` A ) ) ) ) |
63 |
62
|
reximdv |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN0 A. l e. NN0 ( s < l -> [_ l / n ]_ ( ( coe1 ` K ) ` n ) = ( 0g ` R ) ) -> E. s e. NN0 A. l e. NN0 ( s < l -> ( ( ( coe1 ` K ) ` l ) .* O ) = ( 0g ` A ) ) ) ) |
64 |
34 63
|
mpd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN0 A. l e. NN0 ( s < l -> ( ( ( coe1 ` K ) ` l ) .* O ) = ( 0g ` A ) ) ) |
65 |
17 18 20 64
|
mptnn0fsuppd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) finSupp ( 0g ` A ) ) |
66 |
16 65
|
eqbrtrid |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> G finSupp ( 0g ` A ) ) |