Step |
Hyp |
Ref |
Expression |
1 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
2 |
1
|
adantr |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> S C_ CC ) |
3 |
|
simpl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> S e. { RR , CC } ) |
4 |
|
0nn0 |
|- 0 e. NN0 |
5 |
4
|
a1i |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> 0 e. NN0 ) |
6 |
|
elfvdm |
|- ( F e. ( ( C^n ` S ) ` N ) -> N e. dom ( C^n ` S ) ) |
7 |
6
|
adantl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. dom ( C^n ` S ) ) |
8 |
|
fncpn |
|- ( S C_ CC -> ( C^n ` S ) Fn NN0 ) |
9 |
|
fndm |
|- ( ( C^n ` S ) Fn NN0 -> dom ( C^n ` S ) = NN0 ) |
10 |
2 8 9
|
3syl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> dom ( C^n ` S ) = NN0 ) |
11 |
7 10
|
eleqtrd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. NN0 ) |
12 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
13 |
11 12
|
eleqtrdi |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. ( ZZ>= ` 0 ) ) |
14 |
|
cpnord |
|- ( ( S e. { RR , CC } /\ 0 e. NN0 /\ N e. ( ZZ>= ` 0 ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` 0 ) ) |
15 |
3 5 13 14
|
syl3anc |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` 0 ) ) |
16 |
|
simpr |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( ( C^n ` S ) ` N ) ) |
17 |
15 16
|
sseldd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( ( C^n ` S ) ` 0 ) ) |
18 |
|
elcpn |
|- ( ( S C_ CC /\ 0 e. NN0 ) -> ( F e. ( ( C^n ` S ) ` 0 ) <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) ) |
19 |
2 5 18
|
syl2anc |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( F e. ( ( C^n ` S ) ` 0 ) <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) ) |
20 |
17 19
|
mpbid |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) |
21 |
20
|
simpld |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( CC ^pm S ) ) |
22 |
|
dvn0 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
23 |
2 21 22
|
syl2anc |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
24 |
20
|
simprd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) |
25 |
23 24
|
eqeltrrd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( dom F -cn-> CC ) ) |