| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 2 | 1 | adantr |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> S C_ CC ) | 
						
							| 3 |  | simpl |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> S e. { RR , CC } ) | 
						
							| 4 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 5 | 4 | a1i |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> 0 e. NN0 ) | 
						
							| 6 |  | elfvdm |  |-  ( F e. ( ( C^n ` S ) ` N ) -> N e. dom ( C^n ` S ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. dom ( C^n ` S ) ) | 
						
							| 8 |  | fncpn |  |-  ( S C_ CC -> ( C^n ` S ) Fn NN0 ) | 
						
							| 9 |  | fndm |  |-  ( ( C^n ` S ) Fn NN0 -> dom ( C^n ` S ) = NN0 ) | 
						
							| 10 | 2 8 9 | 3syl |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> dom ( C^n ` S ) = NN0 ) | 
						
							| 11 | 7 10 | eleqtrd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. NN0 ) | 
						
							| 12 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 13 | 11 12 | eleqtrdi |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 14 |  | cpnord |  |-  ( ( S e. { RR , CC } /\ 0 e. NN0 /\ N e. ( ZZ>= ` 0 ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` 0 ) ) | 
						
							| 15 | 3 5 13 14 | syl3anc |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` 0 ) ) | 
						
							| 16 |  | simpr |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( ( C^n ` S ) ` N ) ) | 
						
							| 17 | 15 16 | sseldd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( ( C^n ` S ) ` 0 ) ) | 
						
							| 18 |  | elcpn |  |-  ( ( S C_ CC /\ 0 e. NN0 ) -> ( F e. ( ( C^n ` S ) ` 0 ) <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) ) | 
						
							| 19 | 2 5 18 | syl2anc |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( F e. ( ( C^n ` S ) ` 0 ) <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) ) | 
						
							| 20 | 17 19 | mpbid |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 22 |  | dvn0 |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) | 
						
							| 23 | 2 21 22 | syl2anc |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( S Dn F ) ` 0 ) = F ) | 
						
							| 24 | 20 | simprd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) | 
						
							| 25 | 23 24 | eqeltrrd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( dom F -cn-> CC ) ) |