Step |
Hyp |
Ref |
Expression |
1 |
|
rexpen |
|- ( RR X. RR ) ~~ RR |
2 |
|
eleq1w |
|- ( v = x -> ( v e. RR <-> x e. RR ) ) |
3 |
|
eleq1w |
|- ( w = y -> ( w e. RR <-> y e. RR ) ) |
4 |
2 3
|
bi2anan9 |
|- ( ( v = x /\ w = y ) -> ( ( v e. RR /\ w e. RR ) <-> ( x e. RR /\ y e. RR ) ) ) |
5 |
|
oveq2 |
|- ( w = y -> ( _i x. w ) = ( _i x. y ) ) |
6 |
|
oveq12 |
|- ( ( v = x /\ ( _i x. w ) = ( _i x. y ) ) -> ( v + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
7 |
5 6
|
sylan2 |
|- ( ( v = x /\ w = y ) -> ( v + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
8 |
7
|
eqeq2d |
|- ( ( v = x /\ w = y ) -> ( z = ( v + ( _i x. w ) ) <-> z = ( x + ( _i x. y ) ) ) ) |
9 |
4 8
|
anbi12d |
|- ( ( v = x /\ w = y ) -> ( ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) <-> ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) ) ) |
10 |
9
|
cbvoprab12v |
|- { <. <. v , w >. , z >. | ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) } = { <. <. x , y >. , z >. | ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) } |
11 |
|
df-mpo |
|- ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) = { <. <. x , y >. , z >. | ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) } |
12 |
10 11
|
eqtr4i |
|- { <. <. v , w >. , z >. | ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) } = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
13 |
12
|
cnref1o |
|- { <. <. v , w >. , z >. | ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) } : ( RR X. RR ) -1-1-onto-> CC |
14 |
|
reex |
|- RR e. _V |
15 |
14 14
|
xpex |
|- ( RR X. RR ) e. _V |
16 |
15
|
f1oen |
|- ( { <. <. v , w >. , z >. | ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) } : ( RR X. RR ) -1-1-onto-> CC -> ( RR X. RR ) ~~ CC ) |
17 |
13 16
|
ax-mp |
|- ( RR X. RR ) ~~ CC |
18 |
1 17
|
entr3i |
|- RR ~~ CC |
19 |
|
rpnnen |
|- RR ~~ ~P NN |
20 |
18 19
|
entr3i |
|- CC ~~ ~P NN |