| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> F e. ( ( C^n ` CC ) ` N ) ) | 
						
							| 2 |  | ssid |  |-  CC C_ CC | 
						
							| 3 |  | elfvdm |  |-  ( F e. ( ( C^n ` CC ) ` N ) -> N e. dom ( C^n ` CC ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> N e. dom ( C^n ` CC ) ) | 
						
							| 5 |  | fncpn |  |-  ( CC C_ CC -> ( C^n ` CC ) Fn NN0 ) | 
						
							| 6 | 2 5 | ax-mp |  |-  ( C^n ` CC ) Fn NN0 | 
						
							| 7 |  | fndm |  |-  ( ( C^n ` CC ) Fn NN0 -> dom ( C^n ` CC ) = NN0 ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> dom ( C^n ` CC ) = NN0 ) | 
						
							| 9 | 4 8 | eleqtrd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> N e. NN0 ) | 
						
							| 10 |  | elcpn |  |-  ( ( CC C_ CC /\ N e. NN0 ) -> ( F e. ( ( C^n ` CC ) ` N ) <-> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) | 
						
							| 11 | 2 9 10 | sylancr |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F e. ( ( C^n ` CC ) ` N ) <-> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) | 
						
							| 12 | 1 11 | mpbid |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) | 
						
							| 13 | 12 | simpld |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> F e. ( CC ^pm CC ) ) | 
						
							| 14 |  | pmresg |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( F |` S ) e. ( CC ^pm S ) ) | 
						
							| 15 | 13 14 | syldan |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( CC ^pm S ) ) | 
						
							| 16 |  | simpl |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> S e. { RR , CC } ) | 
						
							| 17 | 12 | simprd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) | 
						
							| 18 |  | cncff |  |-  ( ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) -> ( ( CC Dn F ) ` N ) : dom F --> CC ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( CC Dn F ) ` N ) : dom F --> CC ) | 
						
							| 20 | 19 | fdmd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> dom ( ( CC Dn F ) ` N ) = dom F ) | 
						
							| 21 |  | dvnres |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ N e. NN0 ) /\ dom ( ( CC Dn F ) ` N ) = dom F ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) | 
						
							| 22 | 16 13 9 20 21 | syl31anc |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) | 
						
							| 23 |  | resres |  |-  ( ( ( ( CC Dn F ) ` N ) |` S ) |` dom F ) = ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) | 
						
							| 24 |  | rescom |  |-  ( ( ( ( CC Dn F ) ` N ) |` S ) |` dom F ) = ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) | 
						
							| 25 | 23 24 | eqtr3i |  |-  ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) = ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) | 
						
							| 26 |  | ffn |  |-  ( ( ( CC Dn F ) ` N ) : dom F --> CC -> ( ( CC Dn F ) ` N ) Fn dom F ) | 
						
							| 27 |  | fnresdm |  |-  ( ( ( CC Dn F ) ` N ) Fn dom F -> ( ( ( CC Dn F ) ` N ) |` dom F ) = ( ( CC Dn F ) ` N ) ) | 
						
							| 28 | 19 26 27 | 3syl |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` dom F ) = ( ( CC Dn F ) ` N ) ) | 
						
							| 29 | 28 | reseq1d |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) = ( ( ( CC Dn F ) ` N ) |` S ) ) | 
						
							| 30 | 25 29 | eqtrid |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) = ( ( ( CC Dn F ) ` N ) |` S ) ) | 
						
							| 31 |  | inss2 |  |-  ( S i^i dom F ) C_ dom F | 
						
							| 32 |  | rescncf |  |-  ( ( S i^i dom F ) C_ dom F -> ( ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) e. ( ( S i^i dom F ) -cn-> CC ) ) ) | 
						
							| 33 | 31 17 32 | mpsyl |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) e. ( ( S i^i dom F ) -cn-> CC ) ) | 
						
							| 34 | 30 33 | eqeltrrd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` S ) e. ( ( S i^i dom F ) -cn-> CC ) ) | 
						
							| 35 |  | dmres |  |-  dom ( F |` S ) = ( S i^i dom F ) | 
						
							| 36 | 35 | oveq1i |  |-  ( dom ( F |` S ) -cn-> CC ) = ( ( S i^i dom F ) -cn-> CC ) | 
						
							| 37 | 34 36 | eleqtrrdi |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` S ) e. ( dom ( F |` S ) -cn-> CC ) ) | 
						
							| 38 | 22 37 | eqeltrd |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) | 
						
							| 39 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 40 |  | elcpn |  |-  ( ( S C_ CC /\ N e. NN0 ) -> ( ( F |` S ) e. ( ( C^n ` S ) ` N ) <-> ( ( F |` S ) e. ( CC ^pm S ) /\ ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) ) ) | 
						
							| 41 | 39 9 40 | syl2an2r |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( F |` S ) e. ( ( C^n ` S ) ` N ) <-> ( ( F |` S ) e. ( CC ^pm S ) /\ ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) ) ) | 
						
							| 42 | 15 38 41 | mpbir2and |  |-  ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( ( C^n ` S ) ` N ) ) |