Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> F e. ( ( C^n ` CC ) ` N ) ) |
2 |
|
ssid |
|- CC C_ CC |
3 |
|
elfvdm |
|- ( F e. ( ( C^n ` CC ) ` N ) -> N e. dom ( C^n ` CC ) ) |
4 |
3
|
adantl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> N e. dom ( C^n ` CC ) ) |
5 |
|
fncpn |
|- ( CC C_ CC -> ( C^n ` CC ) Fn NN0 ) |
6 |
2 5
|
ax-mp |
|- ( C^n ` CC ) Fn NN0 |
7 |
|
fndm |
|- ( ( C^n ` CC ) Fn NN0 -> dom ( C^n ` CC ) = NN0 ) |
8 |
6 7
|
mp1i |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> dom ( C^n ` CC ) = NN0 ) |
9 |
4 8
|
eleqtrd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> N e. NN0 ) |
10 |
|
elcpn |
|- ( ( CC C_ CC /\ N e. NN0 ) -> ( F e. ( ( C^n ` CC ) ` N ) <-> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) |
11 |
2 9 10
|
sylancr |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F e. ( ( C^n ` CC ) ` N ) <-> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) |
12 |
1 11
|
mpbid |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) |
13 |
12
|
simpld |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> F e. ( CC ^pm CC ) ) |
14 |
|
pmresg |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( F |` S ) e. ( CC ^pm S ) ) |
15 |
13 14
|
syldan |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( CC ^pm S ) ) |
16 |
|
simpl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> S e. { RR , CC } ) |
17 |
12
|
simprd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) |
18 |
|
cncff |
|- ( ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) -> ( ( CC Dn F ) ` N ) : dom F --> CC ) |
19 |
17 18
|
syl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( CC Dn F ) ` N ) : dom F --> CC ) |
20 |
19
|
fdmd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> dom ( ( CC Dn F ) ` N ) = dom F ) |
21 |
|
dvnres |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ N e. NN0 ) /\ dom ( ( CC Dn F ) ` N ) = dom F ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
22 |
16 13 9 20 21
|
syl31anc |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
23 |
|
resres |
|- ( ( ( ( CC Dn F ) ` N ) |` S ) |` dom F ) = ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) |
24 |
|
rescom |
|- ( ( ( ( CC Dn F ) ` N ) |` S ) |` dom F ) = ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) |
25 |
23 24
|
eqtr3i |
|- ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) = ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) |
26 |
|
ffn |
|- ( ( ( CC Dn F ) ` N ) : dom F --> CC -> ( ( CC Dn F ) ` N ) Fn dom F ) |
27 |
|
fnresdm |
|- ( ( ( CC Dn F ) ` N ) Fn dom F -> ( ( ( CC Dn F ) ` N ) |` dom F ) = ( ( CC Dn F ) ` N ) ) |
28 |
19 26 27
|
3syl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` dom F ) = ( ( CC Dn F ) ` N ) ) |
29 |
28
|
reseq1d |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
30 |
25 29
|
eqtrid |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
31 |
|
inss2 |
|- ( S i^i dom F ) C_ dom F |
32 |
|
rescncf |
|- ( ( S i^i dom F ) C_ dom F -> ( ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) e. ( ( S i^i dom F ) -cn-> CC ) ) ) |
33 |
31 17 32
|
mpsyl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) e. ( ( S i^i dom F ) -cn-> CC ) ) |
34 |
30 33
|
eqeltrrd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` S ) e. ( ( S i^i dom F ) -cn-> CC ) ) |
35 |
|
dmres |
|- dom ( F |` S ) = ( S i^i dom F ) |
36 |
35
|
oveq1i |
|- ( dom ( F |` S ) -cn-> CC ) = ( ( S i^i dom F ) -cn-> CC ) |
37 |
34 36
|
eleqtrrdi |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` S ) e. ( dom ( F |` S ) -cn-> CC ) ) |
38 |
22 37
|
eqeltrd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) |
39 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
40 |
|
elcpn |
|- ( ( S C_ CC /\ N e. NN0 ) -> ( ( F |` S ) e. ( ( C^n ` S ) ` N ) <-> ( ( F |` S ) e. ( CC ^pm S ) /\ ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) ) ) |
41 |
39 9 40
|
syl2an2r |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( F |` S ) e. ( ( C^n ` S ) ` N ) <-> ( ( F |` S ) e. ( CC ^pm S ) /\ ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) ) ) |
42 |
15 38 41
|
mpbir2and |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( ( C^n ` S ) ` N ) ) |