Step |
Hyp |
Ref |
Expression |
1 |
|
cramerimp.a |
|- A = ( N Mat R ) |
2 |
|
cramerimp.b |
|- B = ( Base ` A ) |
3 |
|
cramerimp.v |
|- V = ( ( Base ` R ) ^m N ) |
4 |
|
cramerimp.e |
|- E = ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) |
5 |
|
cramerimp.h |
|- H = ( ( X ( N matRepV R ) Y ) ` I ) |
6 |
|
cramerimp.x |
|- .x. = ( R maVecMul <. N , N >. ) |
7 |
|
cramerimp.d |
|- D = ( N maDet R ) |
8 |
|
cramerimp.q |
|- ./ = ( /r ` R ) |
9 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
10 |
9
|
adantr |
|- ( ( R e. CRing /\ I e. N ) -> R e. Ring ) |
11 |
10
|
3ad2ant1 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> R e. Ring ) |
12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
13 |
7 1 2 12
|
mdetf |
|- ( R e. CRing -> D : B --> ( Base ` R ) ) |
14 |
13
|
adantr |
|- ( ( R e. CRing /\ I e. N ) -> D : B --> ( Base ` R ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> D : B --> ( Base ` R ) ) |
16 |
1 2
|
matrcl |
|- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
17 |
16
|
simpld |
|- ( X e. B -> N e. Fin ) |
18 |
17
|
adantr |
|- ( ( X e. B /\ Y e. V ) -> N e. Fin ) |
19 |
10 18
|
anim12i |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> ( R e. Ring /\ N e. Fin ) ) |
20 |
19
|
3adant3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( R e. Ring /\ N e. Fin ) ) |
21 |
|
ne0i |
|- ( I e. N -> N =/= (/) ) |
22 |
9 21
|
anim12ci |
|- ( ( R e. CRing /\ I e. N ) -> ( N =/= (/) /\ R e. Ring ) ) |
23 |
22
|
anim1i |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) ) |
24 |
23
|
3adant3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) ) |
25 |
|
simpl |
|- ( ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X .x. Z ) = Y ) |
26 |
25
|
3ad2ant3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( X .x. Z ) = Y ) |
27 |
1 2 3 6
|
slesolvec |
|- ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) -> ( ( X .x. Z ) = Y -> Z e. V ) ) |
28 |
24 26 27
|
sylc |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> Z e. V ) |
29 |
|
simpr |
|- ( ( R e. CRing /\ I e. N ) -> I e. N ) |
30 |
29
|
3ad2ant1 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> I e. N ) |
31 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
32 |
1 2 3 31
|
ma1repvcl |
|- ( ( ( R e. Ring /\ N e. Fin ) /\ ( Z e. V /\ I e. N ) ) -> ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) e. B ) |
33 |
20 28 30 32
|
syl12anc |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) e. B ) |
34 |
4 33
|
eqeltrid |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> E e. B ) |
35 |
15 34
|
ffvelrnd |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( D ` E ) e. ( Base ` R ) ) |
36 |
|
simpr |
|- ( ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) -> ( D ` X ) e. ( Unit ` R ) ) |
37 |
36
|
3ad2ant3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( D ` X ) e. ( Unit ` R ) ) |
38 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
39 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
40 |
12 38 8 39
|
dvrcan3 |
|- ( ( R e. Ring /\ ( D ` E ) e. ( Base ` R ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( ( D ` E ) ( .r ` R ) ( D ` X ) ) ./ ( D ` X ) ) = ( D ` E ) ) |
41 |
11 35 37 40
|
syl3anc |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( ( ( D ` E ) ( .r ` R ) ( D ` X ) ) ./ ( D ` X ) ) = ( D ` E ) ) |
42 |
|
simpl |
|- ( ( R e. CRing /\ I e. N ) -> R e. CRing ) |
43 |
42
|
3ad2ant1 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> R e. CRing ) |
44 |
12 38
|
unitcl |
|- ( ( D ` X ) e. ( Unit ` R ) -> ( D ` X ) e. ( Base ` R ) ) |
45 |
44
|
adantl |
|- ( ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) -> ( D ` X ) e. ( Base ` R ) ) |
46 |
45
|
3ad2ant3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( D ` X ) e. ( Base ` R ) ) |
47 |
12 39
|
crngcom |
|- ( ( R e. CRing /\ ( D ` E ) e. ( Base ` R ) /\ ( D ` X ) e. ( Base ` R ) ) -> ( ( D ` E ) ( .r ` R ) ( D ` X ) ) = ( ( D ` X ) ( .r ` R ) ( D ` E ) ) ) |
48 |
43 35 46 47
|
syl3anc |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( ( D ` E ) ( .r ` R ) ( D ` X ) ) = ( ( D ` X ) ( .r ` R ) ( D ` E ) ) ) |
49 |
48
|
oveq1d |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( ( ( D ` E ) ( .r ` R ) ( D ` X ) ) ./ ( D ` X ) ) = ( ( ( D ` X ) ( .r ` R ) ( D ` E ) ) ./ ( D ` X ) ) ) |
50 |
18
|
adantl |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> N e. Fin ) |
51 |
42
|
adantr |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> R e. CRing ) |
52 |
29
|
adantr |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> I e. N ) |
53 |
50 51 52
|
3jca |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. CRing /\ I e. N ) ) |
54 |
53
|
3adant3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( N e. Fin /\ R e. CRing /\ I e. N ) ) |
55 |
1 3 4 7
|
cramerimplem1 |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( D ` E ) = ( Z ` I ) ) |
56 |
54 28 55
|
syl2anc |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( D ` E ) = ( Z ` I ) ) |
57 |
41 49 56
|
3eqtr3rd |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( Z ` I ) = ( ( ( D ` X ) ( .r ` R ) ( D ` E ) ) ./ ( D ` X ) ) ) |
58 |
1 2 3 4 5 6 7 39
|
cramerimplem3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( ( D ` X ) ( .r ` R ) ( D ` E ) ) = ( D ` H ) ) |
59 |
58
|
3adant3r |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( ( D ` X ) ( .r ` R ) ( D ` E ) ) = ( D ` H ) ) |
60 |
59
|
oveq1d |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( ( ( D ` X ) ( .r ` R ) ( D ` E ) ) ./ ( D ` X ) ) = ( ( D ` H ) ./ ( D ` X ) ) ) |
61 |
57 60
|
eqtrd |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( Z ` I ) = ( ( D ` H ) ./ ( D ` X ) ) ) |