Step |
Hyp |
Ref |
Expression |
1 |
|
cramerimplem1.a |
|- A = ( N Mat R ) |
2 |
|
cramerimplem1.v |
|- V = ( ( Base ` R ) ^m N ) |
3 |
|
cramerimplem1.e |
|- E = ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) |
4 |
|
cramerimplem1.d |
|- D = ( N maDet R ) |
5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
6 |
5
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
7 |
6
|
ancomd |
|- ( ( N e. Fin /\ R e. CRing ) -> ( R e. Ring /\ N e. Fin ) ) |
8 |
7
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ I e. N ) -> ( R e. Ring /\ N e. Fin ) ) |
9 |
|
simp3 |
|- ( ( N e. Fin /\ R e. CRing /\ I e. N ) -> I e. N ) |
10 |
9
|
anim1i |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( I e. N /\ Z e. V ) ) |
11 |
1
|
fveq2i |
|- ( 1r ` A ) = ( 1r ` ( N Mat R ) ) |
12 |
2 11 3
|
1marepvmarrepid |
|- ( ( ( R e. Ring /\ N e. Fin ) /\ ( I e. N /\ Z e. V ) ) -> ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) = E ) |
13 |
8 10 12
|
syl2an2r |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) = E ) |
14 |
13
|
eqcomd |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> E = ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) ) |
15 |
14
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( D ` E ) = ( D ` ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) ) ) |
16 |
4
|
a1i |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> D = ( N maDet R ) ) |
17 |
16
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( D ` ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) ) = ( ( N maDet R ) ` ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) ) ) |
18 |
|
simpl2 |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> R e. CRing ) |
19 |
9
|
anim1ci |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( Z e. V /\ I e. N ) ) |
20 |
1
|
eqcomi |
|- ( N Mat R ) = A |
21 |
20
|
fveq2i |
|- ( Base ` ( N Mat R ) ) = ( Base ` A ) |
22 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
23 |
1 21 2 22
|
ma1repvcl |
|- ( ( ( R e. Ring /\ N e. Fin ) /\ ( Z e. V /\ I e. N ) ) -> ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) e. ( Base ` ( N Mat R ) ) ) |
24 |
8 19 23
|
syl2an2r |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) e. ( Base ` ( N Mat R ) ) ) |
25 |
3 24
|
eqeltrid |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> E e. ( Base ` ( N Mat R ) ) ) |
26 |
9
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> I e. N ) |
27 |
|
elmapi |
|- ( Z e. ( ( Base ` R ) ^m N ) -> Z : N --> ( Base ` R ) ) |
28 |
|
ffvelrn |
|- ( ( Z : N --> ( Base ` R ) /\ I e. N ) -> ( Z ` I ) e. ( Base ` R ) ) |
29 |
28
|
ex |
|- ( Z : N --> ( Base ` R ) -> ( I e. N -> ( Z ` I ) e. ( Base ` R ) ) ) |
30 |
27 29
|
syl |
|- ( Z e. ( ( Base ` R ) ^m N ) -> ( I e. N -> ( Z ` I ) e. ( Base ` R ) ) ) |
31 |
30 2
|
eleq2s |
|- ( Z e. V -> ( I e. N -> ( Z ` I ) e. ( Base ` R ) ) ) |
32 |
31
|
com12 |
|- ( I e. N -> ( Z e. V -> ( Z ` I ) e. ( Base ` R ) ) ) |
33 |
32
|
3ad2ant3 |
|- ( ( N e. Fin /\ R e. CRing /\ I e. N ) -> ( Z e. V -> ( Z ` I ) e. ( Base ` R ) ) ) |
34 |
33
|
imp |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( Z ` I ) e. ( Base ` R ) ) |
35 |
|
smadiadetr |
|- ( ( ( R e. CRing /\ E e. ( Base ` ( N Mat R ) ) ) /\ ( I e. N /\ ( Z ` I ) e. ( Base ` R ) ) ) -> ( ( N maDet R ) ` ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) ) = ( ( Z ` I ) ( .r ` R ) ( ( ( N \ { I } ) maDet R ) ` ( I ( ( N subMat R ) ` E ) I ) ) ) ) |
36 |
18 25 26 34 35
|
syl22anc |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( ( N maDet R ) ` ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) ) = ( ( Z ` I ) ( .r ` R ) ( ( ( N \ { I } ) maDet R ) ` ( I ( ( N subMat R ) ` E ) I ) ) ) ) |
37 |
17 36
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( D ` ( I ( E ( N matRRep R ) ( Z ` I ) ) I ) ) = ( ( Z ` I ) ( .r ` R ) ( ( ( N \ { I } ) maDet R ) ` ( I ( ( N subMat R ) ` E ) I ) ) ) ) |
38 |
2 11 3
|
1marepvsma1 |
|- ( ( ( R e. Ring /\ N e. Fin ) /\ ( I e. N /\ Z e. V ) ) -> ( I ( ( N subMat R ) ` E ) I ) = ( 1r ` ( ( N \ { I } ) Mat R ) ) ) |
39 |
8 10 38
|
syl2an2r |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( I ( ( N subMat R ) ` E ) I ) = ( 1r ` ( ( N \ { I } ) Mat R ) ) ) |
40 |
39
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( ( ( N \ { I } ) maDet R ) ` ( I ( ( N subMat R ) ` E ) I ) ) = ( ( ( N \ { I } ) maDet R ) ` ( 1r ` ( ( N \ { I } ) Mat R ) ) ) ) |
41 |
40
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( ( Z ` I ) ( .r ` R ) ( ( ( N \ { I } ) maDet R ) ` ( I ( ( N subMat R ) ` E ) I ) ) ) = ( ( Z ` I ) ( .r ` R ) ( ( ( N \ { I } ) maDet R ) ` ( 1r ` ( ( N \ { I } ) Mat R ) ) ) ) ) |
42 |
|
diffi |
|- ( N e. Fin -> ( N \ { I } ) e. Fin ) |
43 |
42
|
anim1ci |
|- ( ( N e. Fin /\ R e. CRing ) -> ( R e. CRing /\ ( N \ { I } ) e. Fin ) ) |
44 |
43
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ I e. N ) -> ( R e. CRing /\ ( N \ { I } ) e. Fin ) ) |
45 |
44
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( R e. CRing /\ ( N \ { I } ) e. Fin ) ) |
46 |
|
eqid |
|- ( ( N \ { I } ) maDet R ) = ( ( N \ { I } ) maDet R ) |
47 |
|
eqid |
|- ( ( N \ { I } ) Mat R ) = ( ( N \ { I } ) Mat R ) |
48 |
|
eqid |
|- ( 1r ` ( ( N \ { I } ) Mat R ) ) = ( 1r ` ( ( N \ { I } ) Mat R ) ) |
49 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
50 |
46 47 48 49
|
mdet1 |
|- ( ( R e. CRing /\ ( N \ { I } ) e. Fin ) -> ( ( ( N \ { I } ) maDet R ) ` ( 1r ` ( ( N \ { I } ) Mat R ) ) ) = ( 1r ` R ) ) |
51 |
45 50
|
syl |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( ( ( N \ { I } ) maDet R ) ` ( 1r ` ( ( N \ { I } ) Mat R ) ) ) = ( 1r ` R ) ) |
52 |
51
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( ( Z ` I ) ( .r ` R ) ( ( ( N \ { I } ) maDet R ) ` ( 1r ` ( ( N \ { I } ) Mat R ) ) ) ) = ( ( Z ` I ) ( .r ` R ) ( 1r ` R ) ) ) |
53 |
5
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ I e. N ) -> R e. Ring ) |
54 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
55 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
56 |
54 55 49
|
ringridm |
|- ( ( R e. Ring /\ ( Z ` I ) e. ( Base ` R ) ) -> ( ( Z ` I ) ( .r ` R ) ( 1r ` R ) ) = ( Z ` I ) ) |
57 |
53 34 56
|
syl2an2r |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( ( Z ` I ) ( .r ` R ) ( 1r ` R ) ) = ( Z ` I ) ) |
58 |
41 52 57
|
3eqtrd |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( ( Z ` I ) ( .r ` R ) ( ( ( N \ { I } ) maDet R ) ` ( I ( ( N subMat R ) ` E ) I ) ) ) = ( Z ` I ) ) |
59 |
15 37 58
|
3eqtrd |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. N ) /\ Z e. V ) -> ( D ` E ) = ( Z ` I ) ) |