Step |
Hyp |
Ref |
Expression |
1 |
|
cramerimp.a |
|- A = ( N Mat R ) |
2 |
|
cramerimp.b |
|- B = ( Base ` A ) |
3 |
|
cramerimp.v |
|- V = ( ( Base ` R ) ^m N ) |
4 |
|
cramerimp.e |
|- E = ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) |
5 |
|
cramerimp.h |
|- H = ( ( X ( N matRepV R ) Y ) ` I ) |
6 |
|
cramerimp.x |
|- .x. = ( R maVecMul <. N , N >. ) |
7 |
|
cramerimp.d |
|- D = ( N maDet R ) |
8 |
|
cramerimp.t |
|- .(x) = ( .r ` R ) |
9 |
|
simpl |
|- ( ( R e. CRing /\ I e. N ) -> R e. CRing ) |
10 |
1 2
|
matrcl |
|- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
11 |
10
|
simpld |
|- ( X e. B -> N e. Fin ) |
12 |
11
|
adantr |
|- ( ( X e. B /\ Y e. V ) -> N e. Fin ) |
13 |
9 12
|
anim12ci |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. CRing ) ) |
14 |
13
|
3adant3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( N e. Fin /\ R e. CRing ) ) |
15 |
|
eqid |
|- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
16 |
1 15
|
matmulr |
|- ( ( N e. Fin /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
17 |
14 16
|
syl |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
18 |
17
|
oveqd |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( X ( R maMul <. N , N , N >. ) E ) = ( X ( .r ` A ) E ) ) |
19 |
18
|
fveq2d |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( D ` ( X ( R maMul <. N , N , N >. ) E ) ) = ( D ` ( X ( .r ` A ) E ) ) ) |
20 |
1 2 3 4 5 6 15
|
cramerimplem2 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( X ( R maMul <. N , N , N >. ) E ) = H ) |
21 |
20
|
fveq2d |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( D ` ( X ( R maMul <. N , N , N >. ) E ) ) = ( D ` H ) ) |
22 |
|
simp1l |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> R e. CRing ) |
23 |
|
simp2l |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> X e. B ) |
24 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
25 |
24
|
adantr |
|- ( ( R e. CRing /\ I e. N ) -> R e. Ring ) |
26 |
25 12
|
anim12i |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> ( R e. Ring /\ N e. Fin ) ) |
27 |
26
|
3adant3 |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( R e. Ring /\ N e. Fin ) ) |
28 |
|
ne0i |
|- ( I e. N -> N =/= (/) ) |
29 |
24 28
|
anim12ci |
|- ( ( R e. CRing /\ I e. N ) -> ( N =/= (/) /\ R e. Ring ) ) |
30 |
1 2 3 6
|
slesolvec |
|- ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) -> ( ( X .x. Z ) = Y -> Z e. V ) ) |
31 |
29 30
|
sylan |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) ) -> ( ( X .x. Z ) = Y -> Z e. V ) ) |
32 |
31
|
3impia |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> Z e. V ) |
33 |
|
simp1r |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> I e. N ) |
34 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
35 |
1 2 3 34
|
ma1repvcl |
|- ( ( ( R e. Ring /\ N e. Fin ) /\ ( Z e. V /\ I e. N ) ) -> ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) e. B ) |
36 |
27 32 33 35
|
syl12anc |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` I ) e. B ) |
37 |
4 36
|
eqeltrid |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> E e. B ) |
38 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
39 |
1 2 7 8 38
|
mdetmul |
|- ( ( R e. CRing /\ X e. B /\ E e. B ) -> ( D ` ( X ( .r ` A ) E ) ) = ( ( D ` X ) .(x) ( D ` E ) ) ) |
40 |
22 23 37 39
|
syl3anc |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( D ` ( X ( .r ` A ) E ) ) = ( ( D ` X ) .(x) ( D ` E ) ) ) |
41 |
19 21 40
|
3eqtr3rd |
|- ( ( ( R e. CRing /\ I e. N ) /\ ( X e. B /\ Y e. V ) /\ ( X .x. Z ) = Y ) -> ( ( D ` X ) .(x) ( D ` E ) ) = ( D ` H ) ) |