| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crctcsh.v |
|- V = ( Vtx ` G ) |
| 2 |
|
crctcsh.i |
|- I = ( iEdg ` G ) |
| 3 |
|
crctcsh.d |
|- ( ph -> F ( Circuits ` G ) P ) |
| 4 |
|
crctcsh.n |
|- N = ( # ` F ) |
| 5 |
|
crctcsh.s |
|- ( ph -> S e. ( 0 ..^ N ) ) |
| 6 |
|
crctcsh.h |
|- H = ( F cyclShift S ) |
| 7 |
|
crctcsh.q |
|- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
| 8 |
1 2 3 4 5 6 7
|
crctcshlem4 |
|- ( ( ph /\ S = 0 ) -> ( H = F /\ Q = P ) ) |
| 9 |
|
breq12 |
|- ( ( H = F /\ Q = P ) -> ( H ( Circuits ` G ) Q <-> F ( Circuits ` G ) P ) ) |
| 10 |
3 9
|
syl5ibrcom |
|- ( ph -> ( ( H = F /\ Q = P ) -> H ( Circuits ` G ) Q ) ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ S = 0 ) -> ( ( H = F /\ Q = P ) -> H ( Circuits ` G ) Q ) ) |
| 12 |
8 11
|
mpd |
|- ( ( ph /\ S = 0 ) -> H ( Circuits ` G ) Q ) |
| 13 |
1 2 3 4 5 6 7
|
crctcshtrl |
|- ( ph -> H ( Trails ` G ) Q ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> H ( Trails ` G ) Q ) |
| 15 |
|
breq1 |
|- ( x = 0 -> ( x <_ ( N - S ) <-> 0 <_ ( N - S ) ) ) |
| 16 |
|
oveq1 |
|- ( x = 0 -> ( x + S ) = ( 0 + S ) ) |
| 17 |
16
|
fveq2d |
|- ( x = 0 -> ( P ` ( x + S ) ) = ( P ` ( 0 + S ) ) ) |
| 18 |
16
|
fvoveq1d |
|- ( x = 0 -> ( P ` ( ( x + S ) - N ) ) = ( P ` ( ( 0 + S ) - N ) ) ) |
| 19 |
15 17 18
|
ifbieq12d |
|- ( x = 0 -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = if ( 0 <_ ( N - S ) , ( P ` ( 0 + S ) ) , ( P ` ( ( 0 + S ) - N ) ) ) ) |
| 20 |
|
elfzo0le |
|- ( S e. ( 0 ..^ N ) -> S <_ N ) |
| 21 |
5 20
|
syl |
|- ( ph -> S <_ N ) |
| 22 |
1 2 3 4
|
crctcshlem1 |
|- ( ph -> N e. NN0 ) |
| 23 |
22
|
nn0red |
|- ( ph -> N e. RR ) |
| 24 |
|
elfzoelz |
|- ( S e. ( 0 ..^ N ) -> S e. ZZ ) |
| 25 |
5 24
|
syl |
|- ( ph -> S e. ZZ ) |
| 26 |
25
|
zred |
|- ( ph -> S e. RR ) |
| 27 |
23 26
|
subge0d |
|- ( ph -> ( 0 <_ ( N - S ) <-> S <_ N ) ) |
| 28 |
21 27
|
mpbird |
|- ( ph -> 0 <_ ( N - S ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> 0 <_ ( N - S ) ) |
| 30 |
29
|
iftrued |
|- ( ( ph /\ S =/= 0 ) -> if ( 0 <_ ( N - S ) , ( P ` ( 0 + S ) ) , ( P ` ( ( 0 + S ) - N ) ) ) = ( P ` ( 0 + S ) ) ) |
| 31 |
19 30
|
sylan9eqr |
|- ( ( ( ph /\ S =/= 0 ) /\ x = 0 ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = ( P ` ( 0 + S ) ) ) |
| 32 |
3
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> F ( Circuits ` G ) P ) |
| 33 |
1 2 32 4
|
crctcshlem1 |
|- ( ( ph /\ S =/= 0 ) -> N e. NN0 ) |
| 34 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
| 35 |
33 34
|
syl |
|- ( ( ph /\ S =/= 0 ) -> 0 e. ( 0 ... N ) ) |
| 36 |
|
fvexd |
|- ( ( ph /\ S =/= 0 ) -> ( P ` ( 0 + S ) ) e. _V ) |
| 37 |
7 31 35 36
|
fvmptd2 |
|- ( ( ph /\ S =/= 0 ) -> ( Q ` 0 ) = ( P ` ( 0 + S ) ) ) |
| 38 |
|
breq1 |
|- ( x = ( # ` H ) -> ( x <_ ( N - S ) <-> ( # ` H ) <_ ( N - S ) ) ) |
| 39 |
|
oveq1 |
|- ( x = ( # ` H ) -> ( x + S ) = ( ( # ` H ) + S ) ) |
| 40 |
39
|
fveq2d |
|- ( x = ( # ` H ) -> ( P ` ( x + S ) ) = ( P ` ( ( # ` H ) + S ) ) ) |
| 41 |
39
|
fvoveq1d |
|- ( x = ( # ` H ) -> ( P ` ( ( x + S ) - N ) ) = ( P ` ( ( ( # ` H ) + S ) - N ) ) ) |
| 42 |
38 40 41
|
ifbieq12d |
|- ( x = ( # ` H ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = if ( ( # ` H ) <_ ( N - S ) , ( P ` ( ( # ` H ) + S ) ) , ( P ` ( ( ( # ` H ) + S ) - N ) ) ) ) |
| 43 |
|
elfzoel2 |
|- ( S e. ( 0 ..^ N ) -> N e. ZZ ) |
| 44 |
|
elfzonn0 |
|- ( S e. ( 0 ..^ N ) -> S e. NN0 ) |
| 45 |
|
simpr |
|- ( ( N e. ZZ /\ S e. NN0 ) -> S e. NN0 ) |
| 46 |
45
|
anim1i |
|- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> ( S e. NN0 /\ S =/= 0 ) ) |
| 47 |
|
elnnne0 |
|- ( S e. NN <-> ( S e. NN0 /\ S =/= 0 ) ) |
| 48 |
46 47
|
sylibr |
|- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> S e. NN ) |
| 49 |
48
|
nngt0d |
|- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> 0 < S ) |
| 50 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 51 |
|
nn0re |
|- ( S e. NN0 -> S e. RR ) |
| 52 |
50 51
|
anim12ci |
|- ( ( N e. ZZ /\ S e. NN0 ) -> ( S e. RR /\ N e. RR ) ) |
| 53 |
52
|
adantr |
|- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> ( S e. RR /\ N e. RR ) ) |
| 54 |
|
ltsubpos |
|- ( ( S e. RR /\ N e. RR ) -> ( 0 < S <-> ( N - S ) < N ) ) |
| 55 |
54
|
bicomd |
|- ( ( S e. RR /\ N e. RR ) -> ( ( N - S ) < N <-> 0 < S ) ) |
| 56 |
53 55
|
syl |
|- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> ( ( N - S ) < N <-> 0 < S ) ) |
| 57 |
49 56
|
mpbird |
|- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> ( N - S ) < N ) |
| 58 |
57
|
ex |
|- ( ( N e. ZZ /\ S e. NN0 ) -> ( S =/= 0 -> ( N - S ) < N ) ) |
| 59 |
43 44 58
|
syl2anc |
|- ( S e. ( 0 ..^ N ) -> ( S =/= 0 -> ( N - S ) < N ) ) |
| 60 |
5 59
|
syl |
|- ( ph -> ( S =/= 0 -> ( N - S ) < N ) ) |
| 61 |
60
|
imp |
|- ( ( ph /\ S =/= 0 ) -> ( N - S ) < N ) |
| 62 |
5
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> S e. ( 0 ..^ N ) ) |
| 63 |
1 2 32 4 62 6
|
crctcshlem2 |
|- ( ( ph /\ S =/= 0 ) -> ( # ` H ) = N ) |
| 64 |
63
|
breq1d |
|- ( ( ph /\ S =/= 0 ) -> ( ( # ` H ) <_ ( N - S ) <-> N <_ ( N - S ) ) ) |
| 65 |
64
|
notbid |
|- ( ( ph /\ S =/= 0 ) -> ( -. ( # ` H ) <_ ( N - S ) <-> -. N <_ ( N - S ) ) ) |
| 66 |
23 26
|
resubcld |
|- ( ph -> ( N - S ) e. RR ) |
| 67 |
66 23
|
jca |
|- ( ph -> ( ( N - S ) e. RR /\ N e. RR ) ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> ( ( N - S ) e. RR /\ N e. RR ) ) |
| 69 |
|
ltnle |
|- ( ( ( N - S ) e. RR /\ N e. RR ) -> ( ( N - S ) < N <-> -. N <_ ( N - S ) ) ) |
| 70 |
68 69
|
syl |
|- ( ( ph /\ S =/= 0 ) -> ( ( N - S ) < N <-> -. N <_ ( N - S ) ) ) |
| 71 |
65 70
|
bitr4d |
|- ( ( ph /\ S =/= 0 ) -> ( -. ( # ` H ) <_ ( N - S ) <-> ( N - S ) < N ) ) |
| 72 |
61 71
|
mpbird |
|- ( ( ph /\ S =/= 0 ) -> -. ( # ` H ) <_ ( N - S ) ) |
| 73 |
72
|
iffalsed |
|- ( ( ph /\ S =/= 0 ) -> if ( ( # ` H ) <_ ( N - S ) , ( P ` ( ( # ` H ) + S ) ) , ( P ` ( ( ( # ` H ) + S ) - N ) ) ) = ( P ` ( ( ( # ` H ) + S ) - N ) ) ) |
| 74 |
42 73
|
sylan9eqr |
|- ( ( ( ph /\ S =/= 0 ) /\ x = ( # ` H ) ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = ( P ` ( ( ( # ` H ) + S ) - N ) ) ) |
| 75 |
1 2 3 4 5 6
|
crctcshlem2 |
|- ( ph -> ( # ` H ) = N ) |
| 76 |
75 22
|
eqeltrd |
|- ( ph -> ( # ` H ) e. NN0 ) |
| 77 |
76
|
nn0cnd |
|- ( ph -> ( # ` H ) e. CC ) |
| 78 |
25
|
zcnd |
|- ( ph -> S e. CC ) |
| 79 |
22
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 80 |
77 78 79
|
addsubd |
|- ( ph -> ( ( ( # ` H ) + S ) - N ) = ( ( ( # ` H ) - N ) + S ) ) |
| 81 |
75
|
oveq1d |
|- ( ph -> ( ( # ` H ) - N ) = ( N - N ) ) |
| 82 |
79
|
subidd |
|- ( ph -> ( N - N ) = 0 ) |
| 83 |
81 82
|
eqtrd |
|- ( ph -> ( ( # ` H ) - N ) = 0 ) |
| 84 |
83
|
oveq1d |
|- ( ph -> ( ( ( # ` H ) - N ) + S ) = ( 0 + S ) ) |
| 85 |
80 84
|
eqtrd |
|- ( ph -> ( ( ( # ` H ) + S ) - N ) = ( 0 + S ) ) |
| 86 |
85
|
fveq2d |
|- ( ph -> ( P ` ( ( ( # ` H ) + S ) - N ) ) = ( P ` ( 0 + S ) ) ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> ( P ` ( ( ( # ` H ) + S ) - N ) ) = ( P ` ( 0 + S ) ) ) |
| 88 |
87
|
adantr |
|- ( ( ( ph /\ S =/= 0 ) /\ x = ( # ` H ) ) -> ( P ` ( ( ( # ` H ) + S ) - N ) ) = ( P ` ( 0 + S ) ) ) |
| 89 |
74 88
|
eqtrd |
|- ( ( ( ph /\ S =/= 0 ) /\ x = ( # ` H ) ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = ( P ` ( 0 + S ) ) ) |
| 90 |
75
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> ( # ` H ) = N ) |
| 91 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 92 |
22 91
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 93 |
92
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> N e. ( 0 ... N ) ) |
| 94 |
90 93
|
eqeltrd |
|- ( ( ph /\ S =/= 0 ) -> ( # ` H ) e. ( 0 ... N ) ) |
| 95 |
7 89 94 36
|
fvmptd2 |
|- ( ( ph /\ S =/= 0 ) -> ( Q ` ( # ` H ) ) = ( P ` ( 0 + S ) ) ) |
| 96 |
37 95
|
eqtr4d |
|- ( ( ph /\ S =/= 0 ) -> ( Q ` 0 ) = ( Q ` ( # ` H ) ) ) |
| 97 |
|
iscrct |
|- ( H ( Circuits ` G ) Q <-> ( H ( Trails ` G ) Q /\ ( Q ` 0 ) = ( Q ` ( # ` H ) ) ) ) |
| 98 |
14 96 97
|
sylanbrc |
|- ( ( ph /\ S =/= 0 ) -> H ( Circuits ` G ) Q ) |
| 99 |
12 98
|
pm2.61dane |
|- ( ph -> H ( Circuits ` G ) Q ) |