Metamath Proof Explorer


Theorem crctcshlem1

Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)

Ref Expression
Hypotheses crctcsh.v
|- V = ( Vtx ` G )
crctcsh.i
|- I = ( iEdg ` G )
crctcsh.d
|- ( ph -> F ( Circuits ` G ) P )
crctcsh.n
|- N = ( # ` F )
Assertion crctcshlem1
|- ( ph -> N e. NN0 )

Proof

Step Hyp Ref Expression
1 crctcsh.v
 |-  V = ( Vtx ` G )
2 crctcsh.i
 |-  I = ( iEdg ` G )
3 crctcsh.d
 |-  ( ph -> F ( Circuits ` G ) P )
4 crctcsh.n
 |-  N = ( # ` F )
5 crctiswlk
 |-  ( F ( Circuits ` G ) P -> F ( Walks ` G ) P )
6 wlkcl
 |-  ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 )
7 4 6 eqeltrid
 |-  ( F ( Walks ` G ) P -> N e. NN0 )
8 3 5 7 3syl
 |-  ( ph -> N e. NN0 )