Metamath Proof Explorer


Theorem crctcshlem3

Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)

Ref Expression
Hypotheses crctcsh.v
|- V = ( Vtx ` G )
crctcsh.i
|- I = ( iEdg ` G )
crctcsh.d
|- ( ph -> F ( Circuits ` G ) P )
crctcsh.n
|- N = ( # ` F )
crctcsh.s
|- ( ph -> S e. ( 0 ..^ N ) )
crctcsh.h
|- H = ( F cyclShift S )
crctcsh.q
|- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) )
Assertion crctcshlem3
|- ( ph -> ( G e. _V /\ H e. _V /\ Q e. _V ) )

Proof

Step Hyp Ref Expression
1 crctcsh.v
 |-  V = ( Vtx ` G )
2 crctcsh.i
 |-  I = ( iEdg ` G )
3 crctcsh.d
 |-  ( ph -> F ( Circuits ` G ) P )
4 crctcsh.n
 |-  N = ( # ` F )
5 crctcsh.s
 |-  ( ph -> S e. ( 0 ..^ N ) )
6 crctcsh.h
 |-  H = ( F cyclShift S )
7 crctcsh.q
 |-  Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) )
8 crctistrl
 |-  ( F ( Circuits ` G ) P -> F ( Trails ` G ) P )
9 trliswlk
 |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P )
10 wlkv
 |-  ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) )
11 simp1
 |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> G e. _V )
12 9 10 11 3syl
 |-  ( F ( Trails ` G ) P -> G e. _V )
13 3 8 12 3syl
 |-  ( ph -> G e. _V )
14 6 ovexi
 |-  H e. _V
15 14 a1i
 |-  ( ph -> H e. _V )
16 ovex
 |-  ( 0 ... N ) e. _V
17 16 mptex
 |-  ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) e. _V
18 7 17 eqeltri
 |-  Q e. _V
19 18 a1i
 |-  ( ph -> Q e. _V )
20 13 15 19 3jca
 |-  ( ph -> ( G e. _V /\ H e. _V /\ Q e. _V ) )