Step |
Hyp |
Ref |
Expression |
1 |
|
crctcsh.v |
|- V = ( Vtx ` G ) |
2 |
|
crctcsh.i |
|- I = ( iEdg ` G ) |
3 |
|
crctcsh.d |
|- ( ph -> F ( Circuits ` G ) P ) |
4 |
|
crctcsh.n |
|- N = ( # ` F ) |
5 |
|
crctcsh.s |
|- ( ph -> S e. ( 0 ..^ N ) ) |
6 |
|
crctcsh.h |
|- H = ( F cyclShift S ) |
7 |
|
crctcsh.q |
|- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
8 |
1 2 3 4 5 6 7
|
crctcshlem4 |
|- ( ( ph /\ S = 0 ) -> ( H = F /\ Q = P ) ) |
9 |
|
crctistrl |
|- ( F ( Circuits ` G ) P -> F ( Trails ` G ) P ) |
10 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
11 |
3 9 10
|
3syl |
|- ( ph -> F ( Walks ` G ) P ) |
12 |
|
breq12 |
|- ( ( H = F /\ Q = P ) -> ( H ( Walks ` G ) Q <-> F ( Walks ` G ) P ) ) |
13 |
11 12
|
syl5ibrcom |
|- ( ph -> ( ( H = F /\ Q = P ) -> H ( Walks ` G ) Q ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ S = 0 ) -> ( ( H = F /\ Q = P ) -> H ( Walks ` G ) Q ) ) |
15 |
8 14
|
mpd |
|- ( ( ph /\ S = 0 ) -> H ( Walks ` G ) Q ) |
16 |
1 2 3 4 5 6 7
|
crctcshwlkn0 |
|- ( ( ph /\ S =/= 0 ) -> H ( Walks ` G ) Q ) |
17 |
15 16
|
pm2.61dane |
|- ( ph -> H ( Walks ` G ) Q ) |