| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. RR /\ B e. NN ) -> A e. CC ) | 
						
							| 3 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. RR /\ B e. NN ) -> B e. CC ) | 
						
							| 5 |  | 1cnd |  |-  ( ( A e. RR /\ B e. NN ) -> 1 e. CC ) | 
						
							| 6 |  | subsub |  |-  ( ( A e. CC /\ B e. CC /\ 1 e. CC ) -> ( A - ( B - 1 ) ) = ( ( A - B ) + 1 ) ) | 
						
							| 7 | 6 | eqcomd |  |-  ( ( A e. CC /\ B e. CC /\ 1 e. CC ) -> ( ( A - B ) + 1 ) = ( A - ( B - 1 ) ) ) | 
						
							| 8 | 2 4 5 7 | syl3anc |  |-  ( ( A e. RR /\ B e. NN ) -> ( ( A - B ) + 1 ) = ( A - ( B - 1 ) ) ) | 
						
							| 9 |  | nnm1ge0 |  |-  ( B e. NN -> 0 <_ ( B - 1 ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. RR /\ B e. NN ) -> 0 <_ ( B - 1 ) ) | 
						
							| 11 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 12 |  | peano2rem |  |-  ( B e. RR -> ( B - 1 ) e. RR ) | 
						
							| 13 | 11 12 | syl |  |-  ( B e. NN -> ( B - 1 ) e. RR ) | 
						
							| 14 |  | subge02 |  |-  ( ( A e. RR /\ ( B - 1 ) e. RR ) -> ( 0 <_ ( B - 1 ) <-> ( A - ( B - 1 ) ) <_ A ) ) | 
						
							| 15 | 14 | bicomd |  |-  ( ( A e. RR /\ ( B - 1 ) e. RR ) -> ( ( A - ( B - 1 ) ) <_ A <-> 0 <_ ( B - 1 ) ) ) | 
						
							| 16 | 13 15 | sylan2 |  |-  ( ( A e. RR /\ B e. NN ) -> ( ( A - ( B - 1 ) ) <_ A <-> 0 <_ ( B - 1 ) ) ) | 
						
							| 17 | 10 16 | mpbird |  |-  ( ( A e. RR /\ B e. NN ) -> ( A - ( B - 1 ) ) <_ A ) | 
						
							| 18 | 8 17 | eqbrtrd |  |-  ( ( A e. RR /\ B e. NN ) -> ( ( A - B ) + 1 ) <_ A ) |