| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crctcshwlkn0lem.s |  |-  ( ph -> S e. ( 1 ..^ N ) ) | 
						
							| 2 |  | crctcshwlkn0lem.q |  |-  Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) | 
						
							| 3 |  | crctcshwlkn0lem.h |  |-  H = ( F cyclShift S ) | 
						
							| 4 |  | crctcshwlkn0lem.n |  |-  N = ( # ` F ) | 
						
							| 5 |  | crctcshwlkn0lem.f |  |-  ( ph -> F e. Word A ) | 
						
							| 6 |  | crctcshwlkn0lem.p |  |-  ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) | 
						
							| 7 |  | elfzoelz |  |-  ( j e. ( 0 ..^ ( N - S ) ) -> j e. ZZ ) | 
						
							| 8 | 7 | zcnd |  |-  ( j e. ( 0 ..^ ( N - S ) ) -> j e. CC ) | 
						
							| 9 | 8 | adantl |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> j e. CC ) | 
						
							| 10 |  | elfzoelz |  |-  ( S e. ( 1 ..^ N ) -> S e. ZZ ) | 
						
							| 11 | 10 | zcnd |  |-  ( S e. ( 1 ..^ N ) -> S e. CC ) | 
						
							| 12 | 11 | adantr |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> S e. CC ) | 
						
							| 13 |  | 1cnd |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> 1 e. CC ) | 
						
							| 14 | 9 12 13 | add32d |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) | 
						
							| 15 |  | elfzo1 |  |-  ( S e. ( 1 ..^ N ) <-> ( S e. NN /\ N e. NN /\ S < N ) ) | 
						
							| 16 |  | elfzonn0 |  |-  ( j e. ( 0 ..^ ( N - S ) ) -> j e. NN0 ) | 
						
							| 17 |  | nnnn0 |  |-  ( S e. NN -> S e. NN0 ) | 
						
							| 18 |  | nn0addcl |  |-  ( ( j e. NN0 /\ S e. NN0 ) -> ( j + S ) e. NN0 ) | 
						
							| 19 | 18 | ex |  |-  ( j e. NN0 -> ( S e. NN0 -> ( j + S ) e. NN0 ) ) | 
						
							| 20 | 16 17 19 | syl2imc |  |-  ( S e. NN -> ( j e. ( 0 ..^ ( N - S ) ) -> ( j + S ) e. NN0 ) ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j e. ( 0 ..^ ( N - S ) ) -> ( j + S ) e. NN0 ) ) | 
						
							| 22 | 15 21 | sylbi |  |-  ( S e. ( 1 ..^ N ) -> ( j e. ( 0 ..^ ( N - S ) ) -> ( j + S ) e. NN0 ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. NN0 ) | 
						
							| 24 |  | fzo0ss1 |  |-  ( 1 ..^ N ) C_ ( 0 ..^ N ) | 
						
							| 25 | 24 | sseli |  |-  ( S e. ( 1 ..^ N ) -> S e. ( 0 ..^ N ) ) | 
						
							| 26 |  | elfzo0 |  |-  ( S e. ( 0 ..^ N ) <-> ( S e. NN0 /\ N e. NN /\ S < N ) ) | 
						
							| 27 | 26 | simp2bi |  |-  ( S e. ( 0 ..^ N ) -> N e. NN ) | 
						
							| 28 | 25 27 | syl |  |-  ( S e. ( 1 ..^ N ) -> N e. NN ) | 
						
							| 29 | 28 | adantr |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> N e. NN ) | 
						
							| 30 |  | elfzo0 |  |-  ( j e. ( 0 ..^ ( N - S ) ) <-> ( j e. NN0 /\ ( N - S ) e. NN /\ j < ( N - S ) ) ) | 
						
							| 31 |  | nn0re |  |-  ( j e. NN0 -> j e. RR ) | 
						
							| 32 |  | nnre |  |-  ( S e. NN -> S e. RR ) | 
						
							| 33 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 34 | 32 33 | anim12i |  |-  ( ( S e. NN /\ N e. NN ) -> ( S e. RR /\ N e. RR ) ) | 
						
							| 35 | 34 | 3adant3 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( S e. RR /\ N e. RR ) ) | 
						
							| 36 | 15 35 | sylbi |  |-  ( S e. ( 1 ..^ N ) -> ( S e. RR /\ N e. RR ) ) | 
						
							| 37 | 31 36 | anim12i |  |-  ( ( j e. NN0 /\ S e. ( 1 ..^ N ) ) -> ( j e. RR /\ ( S e. RR /\ N e. RR ) ) ) | 
						
							| 38 |  | 3anass |  |-  ( ( j e. RR /\ S e. RR /\ N e. RR ) <-> ( j e. RR /\ ( S e. RR /\ N e. RR ) ) ) | 
						
							| 39 | 37 38 | sylibr |  |-  ( ( j e. NN0 /\ S e. ( 1 ..^ N ) ) -> ( j e. RR /\ S e. RR /\ N e. RR ) ) | 
						
							| 40 |  | ltaddsub |  |-  ( ( j e. RR /\ S e. RR /\ N e. RR ) -> ( ( j + S ) < N <-> j < ( N - S ) ) ) | 
						
							| 41 | 40 | bicomd |  |-  ( ( j e. RR /\ S e. RR /\ N e. RR ) -> ( j < ( N - S ) <-> ( j + S ) < N ) ) | 
						
							| 42 | 39 41 | syl |  |-  ( ( j e. NN0 /\ S e. ( 1 ..^ N ) ) -> ( j < ( N - S ) <-> ( j + S ) < N ) ) | 
						
							| 43 | 42 | biimpd |  |-  ( ( j e. NN0 /\ S e. ( 1 ..^ N ) ) -> ( j < ( N - S ) -> ( j + S ) < N ) ) | 
						
							| 44 | 43 | ex |  |-  ( j e. NN0 -> ( S e. ( 1 ..^ N ) -> ( j < ( N - S ) -> ( j + S ) < N ) ) ) | 
						
							| 45 | 44 | com23 |  |-  ( j e. NN0 -> ( j < ( N - S ) -> ( S e. ( 1 ..^ N ) -> ( j + S ) < N ) ) ) | 
						
							| 46 | 45 | a1d |  |-  ( j e. NN0 -> ( ( N - S ) e. NN -> ( j < ( N - S ) -> ( S e. ( 1 ..^ N ) -> ( j + S ) < N ) ) ) ) | 
						
							| 47 | 46 | 3imp |  |-  ( ( j e. NN0 /\ ( N - S ) e. NN /\ j < ( N - S ) ) -> ( S e. ( 1 ..^ N ) -> ( j + S ) < N ) ) | 
						
							| 48 | 30 47 | sylbi |  |-  ( j e. ( 0 ..^ ( N - S ) ) -> ( S e. ( 1 ..^ N ) -> ( j + S ) < N ) ) | 
						
							| 49 | 48 | impcom |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) < N ) | 
						
							| 50 |  | elfzo0 |  |-  ( ( j + S ) e. ( 0 ..^ N ) <-> ( ( j + S ) e. NN0 /\ N e. NN /\ ( j + S ) < N ) ) | 
						
							| 51 | 23 29 49 50 | syl3anbrc |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. ( 0 ..^ N ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) -> ( j + S ) e. ( 0 ..^ N ) ) | 
						
							| 53 |  | fveq2 |  |-  ( i = ( j + S ) -> ( P ` i ) = ( P ` ( j + S ) ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( P ` i ) = ( P ` ( j + S ) ) ) | 
						
							| 55 |  | fvoveq1 |  |-  ( i = ( j + S ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( j + S ) + 1 ) ) ) | 
						
							| 56 |  | simpr |  |-  ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) -> ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) -> ( P ` ( ( j + S ) + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) | 
						
							| 58 | 55 57 | sylan9eqr |  |-  ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) | 
						
							| 59 | 54 58 | eqeq12d |  |-  ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( ( P ` i ) = ( P ` ( i + 1 ) ) <-> ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) ) ) | 
						
							| 60 |  | 2fveq3 |  |-  ( i = ( j + S ) -> ( I ` ( F ` i ) ) = ( I ` ( F ` ( j + S ) ) ) ) | 
						
							| 61 | 53 | sneqd |  |-  ( i = ( j + S ) -> { ( P ` i ) } = { ( P ` ( j + S ) ) } ) | 
						
							| 62 | 60 61 | eqeq12d |  |-  ( i = ( j + S ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) } <-> ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) } <-> ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } ) ) | 
						
							| 64 | 54 58 | preq12d |  |-  ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } ) | 
						
							| 65 | 60 | adantl |  |-  ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( I ` ( F ` i ) ) = ( I ` ( F ` ( j + S ) ) ) ) | 
						
							| 66 | 64 65 | sseq12d |  |-  ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) <-> { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) | 
						
							| 67 | 59 63 66 | ifpbi123d |  |-  ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) | 
						
							| 68 | 52 67 | rspcdv |  |-  ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) | 
						
							| 69 | 14 68 | mpdan |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) | 
						
							| 70 | 1 69 | sylan |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) | 
						
							| 71 | 70 | ex |  |-  ( ph -> ( j e. ( 0 ..^ ( N - S ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) ) | 
						
							| 72 | 6 71 | mpid |  |-  ( ph -> ( j e. ( 0 ..^ ( N - S ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) | 
						
							| 73 | 72 | imp |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) | 
						
							| 74 |  | elfzofz |  |-  ( j e. ( 0 ..^ ( N - S ) ) -> j e. ( 0 ... ( N - S ) ) ) | 
						
							| 75 | 1 2 | crctcshwlkn0lem2 |  |-  ( ( ph /\ j e. ( 0 ... ( N - S ) ) ) -> ( Q ` j ) = ( P ` ( j + S ) ) ) | 
						
							| 76 | 74 75 | sylan2 |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( Q ` j ) = ( P ` ( j + S ) ) ) | 
						
							| 77 |  | fzofzp1 |  |-  ( j e. ( 0 ..^ ( N - S ) ) -> ( j + 1 ) e. ( 0 ... ( N - S ) ) ) | 
						
							| 78 | 1 2 | crctcshwlkn0lem2 |  |-  ( ( ph /\ ( j + 1 ) e. ( 0 ... ( N - S ) ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) | 
						
							| 79 | 77 78 | sylan2 |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) | 
						
							| 80 | 3 | fveq1i |  |-  ( H ` j ) = ( ( F cyclShift S ) ` j ) | 
						
							| 81 | 5 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> F e. Word A ) | 
						
							| 82 | 1 10 | syl |  |-  ( ph -> S e. ZZ ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> S e. ZZ ) | 
						
							| 84 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 85 | 84 | adantl |  |-  ( ( S e. NN /\ N e. NN ) -> N e. ZZ ) | 
						
							| 86 |  | nnz |  |-  ( S e. NN -> S e. ZZ ) | 
						
							| 87 | 86 | adantr |  |-  ( ( S e. NN /\ N e. NN ) -> S e. ZZ ) | 
						
							| 88 | 85 87 | zsubcld |  |-  ( ( S e. NN /\ N e. NN ) -> ( N - S ) e. ZZ ) | 
						
							| 89 | 17 | nn0ge0d |  |-  ( S e. NN -> 0 <_ S ) | 
						
							| 90 | 89 | adantr |  |-  ( ( S e. NN /\ N e. NN ) -> 0 <_ S ) | 
						
							| 91 |  | subge02 |  |-  ( ( N e. RR /\ S e. RR ) -> ( 0 <_ S <-> ( N - S ) <_ N ) ) | 
						
							| 92 | 33 32 91 | syl2anr |  |-  ( ( S e. NN /\ N e. NN ) -> ( 0 <_ S <-> ( N - S ) <_ N ) ) | 
						
							| 93 | 90 92 | mpbid |  |-  ( ( S e. NN /\ N e. NN ) -> ( N - S ) <_ N ) | 
						
							| 94 | 88 85 93 | 3jca |  |-  ( ( S e. NN /\ N e. NN ) -> ( ( N - S ) e. ZZ /\ N e. ZZ /\ ( N - S ) <_ N ) ) | 
						
							| 95 | 94 | 3adant3 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) e. ZZ /\ N e. ZZ /\ ( N - S ) <_ N ) ) | 
						
							| 96 | 15 95 | sylbi |  |-  ( S e. ( 1 ..^ N ) -> ( ( N - S ) e. ZZ /\ N e. ZZ /\ ( N - S ) <_ N ) ) | 
						
							| 97 |  | eluz2 |  |-  ( N e. ( ZZ>= ` ( N - S ) ) <-> ( ( N - S ) e. ZZ /\ N e. ZZ /\ ( N - S ) <_ N ) ) | 
						
							| 98 | 96 97 | sylibr |  |-  ( S e. ( 1 ..^ N ) -> N e. ( ZZ>= ` ( N - S ) ) ) | 
						
							| 99 |  | fzoss2 |  |-  ( N e. ( ZZ>= ` ( N - S ) ) -> ( 0 ..^ ( N - S ) ) C_ ( 0 ..^ N ) ) | 
						
							| 100 | 1 98 99 | 3syl |  |-  ( ph -> ( 0 ..^ ( N - S ) ) C_ ( 0 ..^ N ) ) | 
						
							| 101 | 100 | sselda |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> j e. ( 0 ..^ N ) ) | 
						
							| 102 | 4 | oveq2i |  |-  ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) | 
						
							| 103 | 101 102 | eleqtrdi |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> j e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 104 |  | cshwidxmod |  |-  ( ( F e. Word A /\ S e. ZZ /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 105 | 81 83 103 104 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) | 
						
							| 106 | 4 | eqcomi |  |-  ( # ` F ) = N | 
						
							| 107 | 106 | oveq2i |  |-  ( ( j + S ) mod ( # ` F ) ) = ( ( j + S ) mod N ) | 
						
							| 108 | 21 | imp |  |-  ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. NN0 ) | 
						
							| 109 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 110 | 109 | 3ad2ant2 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - 1 ) e. NN0 ) | 
						
							| 111 | 110 | adantr |  |-  ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( N - 1 ) e. NN0 ) | 
						
							| 112 | 31 35 | anim12i |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j e. RR /\ ( S e. RR /\ N e. RR ) ) ) | 
						
							| 113 | 112 38 | sylibr |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j e. RR /\ S e. RR /\ N e. RR ) ) | 
						
							| 114 | 113 41 | syl |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j < ( N - S ) <-> ( j + S ) < N ) ) | 
						
							| 115 | 17 | 3ad2ant1 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> S e. NN0 ) | 
						
							| 116 | 115 18 | sylan2 |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j + S ) e. NN0 ) | 
						
							| 117 | 116 | nn0zd |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j + S ) e. ZZ ) | 
						
							| 118 | 84 | 3ad2ant2 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. ZZ ) | 
						
							| 119 | 118 | adantl |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> N e. ZZ ) | 
						
							| 120 |  | zltlem1 |  |-  ( ( ( j + S ) e. ZZ /\ N e. ZZ ) -> ( ( j + S ) < N <-> ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 121 | 117 119 120 | syl2anc |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( ( j + S ) < N <-> ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 122 | 121 | biimpd |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( ( j + S ) < N -> ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 123 | 114 122 | sylbid |  |-  ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j < ( N - S ) -> ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 124 | 123 | impancom |  |-  ( ( j e. NN0 /\ j < ( N - S ) ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 125 | 124 | 3adant2 |  |-  ( ( j e. NN0 /\ ( N - S ) e. NN /\ j < ( N - S ) ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 126 | 30 125 | sylbi |  |-  ( j e. ( 0 ..^ ( N - S ) ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 127 | 126 | impcom |  |-  ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) <_ ( N - 1 ) ) | 
						
							| 128 | 108 111 127 | 3jca |  |-  ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 129 | 15 128 | sylanb |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 130 |  | elfz2nn0 |  |-  ( ( j + S ) e. ( 0 ... ( N - 1 ) ) <-> ( ( j + S ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( j + S ) <_ ( N - 1 ) ) ) | 
						
							| 131 | 129 130 | sylibr |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 132 |  | zaddcl |  |-  ( ( j e. ZZ /\ S e. ZZ ) -> ( j + S ) e. ZZ ) | 
						
							| 133 | 7 10 132 | syl2anr |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. ZZ ) | 
						
							| 134 |  | zmodid2 |  |-  ( ( ( j + S ) e. ZZ /\ N e. NN ) -> ( ( ( j + S ) mod N ) = ( j + S ) <-> ( j + S ) e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 135 | 133 29 134 | syl2anc |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( ( j + S ) mod N ) = ( j + S ) <-> ( j + S ) e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 136 | 131 135 | mpbird |  |-  ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) mod N ) = ( j + S ) ) | 
						
							| 137 | 1 136 | sylan |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) mod N ) = ( j + S ) ) | 
						
							| 138 | 107 137 | eqtrid |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) mod ( # ` F ) ) = ( j + S ) ) | 
						
							| 139 | 138 | fveq2d |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( F ` ( ( j + S ) mod ( # ` F ) ) ) = ( F ` ( j + S ) ) ) | 
						
							| 140 | 105 139 | eqtrd |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( j + S ) ) ) | 
						
							| 141 | 80 140 | eqtrid |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( H ` j ) = ( F ` ( j + S ) ) ) | 
						
							| 142 | 141 | fveq2d |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) | 
						
							| 143 |  | simp1 |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( Q ` j ) = ( P ` ( j + S ) ) ) | 
						
							| 144 |  | simp2 |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) | 
						
							| 145 | 143 144 | eqeq12d |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( ( Q ` j ) = ( Q ` ( j + 1 ) ) <-> ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) ) ) | 
						
							| 146 |  | simp3 |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) | 
						
							| 147 | 143 | sneqd |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> { ( Q ` j ) } = { ( P ` ( j + S ) ) } ) | 
						
							| 148 | 146 147 | eqeq12d |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( ( I ` ( H ` j ) ) = { ( Q ` j ) } <-> ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } ) ) | 
						
							| 149 | 143 144 | preq12d |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> { ( Q ` j ) , ( Q ` ( j + 1 ) ) } = { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } ) | 
						
							| 150 | 149 146 | sseq12d |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) <-> { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) | 
						
							| 151 | 145 148 150 | ifpbi123d |  |-  ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) | 
						
							| 152 | 76 79 142 151 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) | 
						
							| 153 | 73 152 | mpbird |  |-  ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) | 
						
							| 154 | 153 | ralrimiva |  |-  ( ph -> A. j e. ( 0 ..^ ( N - S ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |