| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crctcshwlkn0lem.s |  |-  ( ph -> S e. ( 1 ..^ N ) ) | 
						
							| 2 |  | crctcshwlkn0lem.q |  |-  Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) | 
						
							| 3 |  | crctcshwlkn0lem.h |  |-  H = ( F cyclShift S ) | 
						
							| 4 |  | crctcshwlkn0lem.n |  |-  N = ( # ` F ) | 
						
							| 5 |  | crctcshwlkn0lem.f |  |-  ( ph -> F e. Word A ) | 
						
							| 6 |  | crctcshwlkn0lem.p |  |-  ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) | 
						
							| 7 |  | crctcshwlkn0lem.e |  |-  ( ph -> ( P ` N ) = ( P ` 0 ) ) | 
						
							| 8 | 1 2 3 4 5 6 | crctcshwlkn0lem4 |  |-  ( ph -> A. j e. ( 0 ..^ ( N - S ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) | 
						
							| 9 |  | eqidd |  |-  ( ph -> ( N - S ) = ( N - S ) ) | 
						
							| 10 | 1 2 3 4 5 6 7 | crctcshwlkn0lem6 |  |-  ( ( ph /\ ( N - S ) = ( N - S ) ) -> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) | 
						
							| 11 | 9 10 | mpdan |  |-  ( ph -> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) | 
						
							| 12 |  | ovex |  |-  ( N - S ) e. _V | 
						
							| 13 |  | wkslem1 |  |-  ( j = ( N - S ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) ) | 
						
							| 14 | 12 13 | ralsn |  |-  ( A. j e. { ( N - S ) } if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) | 
						
							| 15 | 11 14 | sylibr |  |-  ( ph -> A. j e. { ( N - S ) } if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) | 
						
							| 16 |  | ralunb |  |-  ( A. j e. ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> ( A. j e. ( 0 ..^ ( N - S ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) /\ A. j e. { ( N - S ) } if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) | 
						
							| 17 | 8 15 16 | sylanbrc |  |-  ( ph -> A. j e. ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) | 
						
							| 18 |  | elfzo1 |  |-  ( S e. ( 1 ..^ N ) <-> ( S e. NN /\ N e. NN /\ S < N ) ) | 
						
							| 19 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 20 |  | nnz |  |-  ( S e. NN -> S e. ZZ ) | 
						
							| 21 |  | zsubcl |  |-  ( ( N e. ZZ /\ S e. ZZ ) -> ( N - S ) e. ZZ ) | 
						
							| 22 | 19 20 21 | syl2anr |  |-  ( ( S e. NN /\ N e. NN ) -> ( N - S ) e. ZZ ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. ZZ ) | 
						
							| 24 |  | nnre |  |-  ( S e. NN -> S e. RR ) | 
						
							| 25 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 26 |  | posdif |  |-  ( ( S e. RR /\ N e. RR ) -> ( S < N <-> 0 < ( N - S ) ) ) | 
						
							| 27 |  | 0re |  |-  0 e. RR | 
						
							| 28 |  | resubcl |  |-  ( ( N e. RR /\ S e. RR ) -> ( N - S ) e. RR ) | 
						
							| 29 | 28 | ancoms |  |-  ( ( S e. RR /\ N e. RR ) -> ( N - S ) e. RR ) | 
						
							| 30 |  | ltle |  |-  ( ( 0 e. RR /\ ( N - S ) e. RR ) -> ( 0 < ( N - S ) -> 0 <_ ( N - S ) ) ) | 
						
							| 31 | 27 29 30 | sylancr |  |-  ( ( S e. RR /\ N e. RR ) -> ( 0 < ( N - S ) -> 0 <_ ( N - S ) ) ) | 
						
							| 32 | 26 31 | sylbid |  |-  ( ( S e. RR /\ N e. RR ) -> ( S < N -> 0 <_ ( N - S ) ) ) | 
						
							| 33 | 24 25 32 | syl2an |  |-  ( ( S e. NN /\ N e. NN ) -> ( S < N -> 0 <_ ( N - S ) ) ) | 
						
							| 34 | 33 | 3impia |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> 0 <_ ( N - S ) ) | 
						
							| 35 |  | elnn0z |  |-  ( ( N - S ) e. NN0 <-> ( ( N - S ) e. ZZ /\ 0 <_ ( N - S ) ) ) | 
						
							| 36 | 23 34 35 | sylanbrc |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN0 ) | 
						
							| 37 |  | elnn0uz |  |-  ( ( N - S ) e. NN0 <-> ( N - S ) e. ( ZZ>= ` 0 ) ) | 
						
							| 38 | 36 37 | sylib |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. ( ZZ>= ` 0 ) ) | 
						
							| 39 |  | fzosplitsn |  |-  ( ( N - S ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( N - S ) + 1 ) ) = ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( 0 ..^ ( ( N - S ) + 1 ) ) = ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) ) | 
						
							| 41 | 18 40 | sylbi |  |-  ( S e. ( 1 ..^ N ) -> ( 0 ..^ ( ( N - S ) + 1 ) ) = ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) ) | 
						
							| 42 | 1 41 | syl |  |-  ( ph -> ( 0 ..^ ( ( N - S ) + 1 ) ) = ( ( 0 ..^ ( N - S ) ) u. { ( N - S ) } ) ) | 
						
							| 43 | 17 42 | raleqtrrdv |  |-  ( ph -> A. j e. ( 0 ..^ ( ( N - S ) + 1 ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) | 
						
							| 44 | 1 2 3 4 5 6 | crctcshwlkn0lem5 |  |-  ( ph -> A. j e. ( ( ( N - S ) + 1 ) ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) | 
						
							| 45 |  | ralunb |  |-  ( A. j e. ( ( 0 ..^ ( ( N - S ) + 1 ) ) u. ( ( ( N - S ) + 1 ) ..^ N ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> ( A. j e. ( 0 ..^ ( ( N - S ) + 1 ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) /\ A. j e. ( ( ( N - S ) + 1 ) ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) ) | 
						
							| 46 | 43 44 45 | sylanbrc |  |-  ( ph -> A. j e. ( ( 0 ..^ ( ( N - S ) + 1 ) ) u. ( ( ( N - S ) + 1 ) ..^ N ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) | 
						
							| 47 |  | nnsub |  |-  ( ( S e. NN /\ N e. NN ) -> ( S < N <-> ( N - S ) e. NN ) ) | 
						
							| 48 | 47 | biimp3a |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN ) | 
						
							| 49 |  | nnnn0 |  |-  ( ( N - S ) e. NN -> ( N - S ) e. NN0 ) | 
						
							| 50 |  | peano2nn0 |  |-  ( ( N - S ) e. NN0 -> ( ( N - S ) + 1 ) e. NN0 ) | 
						
							| 51 | 48 49 50 | 3syl |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) + 1 ) e. NN0 ) | 
						
							| 52 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 53 | 52 | 3ad2ant2 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. NN0 ) | 
						
							| 54 | 25 | anim1i |  |-  ( ( N e. NN /\ S e. NN ) -> ( N e. RR /\ S e. NN ) ) | 
						
							| 55 | 54 | ancoms |  |-  ( ( S e. NN /\ N e. NN ) -> ( N e. RR /\ S e. NN ) ) | 
						
							| 56 |  | crctcshwlkn0lem1 |  |-  ( ( N e. RR /\ S e. NN ) -> ( ( N - S ) + 1 ) <_ N ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( S e. NN /\ N e. NN ) -> ( ( N - S ) + 1 ) <_ N ) | 
						
							| 58 | 57 | 3adant3 |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) + 1 ) <_ N ) | 
						
							| 59 |  | elfz2nn0 |  |-  ( ( ( N - S ) + 1 ) e. ( 0 ... N ) <-> ( ( ( N - S ) + 1 ) e. NN0 /\ N e. NN0 /\ ( ( N - S ) + 1 ) <_ N ) ) | 
						
							| 60 | 51 53 58 59 | syl3anbrc |  |-  ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) + 1 ) e. ( 0 ... N ) ) | 
						
							| 61 | 18 60 | sylbi |  |-  ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) e. ( 0 ... N ) ) | 
						
							| 62 |  | fzosplit |  |-  ( ( ( N - S ) + 1 ) e. ( 0 ... N ) -> ( 0 ..^ N ) = ( ( 0 ..^ ( ( N - S ) + 1 ) ) u. ( ( ( N - S ) + 1 ) ..^ N ) ) ) | 
						
							| 63 | 1 61 62 | 3syl |  |-  ( ph -> ( 0 ..^ N ) = ( ( 0 ..^ ( ( N - S ) + 1 ) ) u. ( ( ( N - S ) + 1 ) ..^ N ) ) ) | 
						
							| 64 | 46 63 | raleqtrrdv |  |-  ( ph -> A. j e. ( 0 ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |