Step |
Hyp |
Ref |
Expression |
1 |
|
crctprop |
|- ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
2 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
3 |
|
isclwlk |
|- ( F ( ClWalks ` G ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
4 |
3
|
biimpri |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> F ( ClWalks ` G ) P ) |
5 |
2 4
|
sylan |
|- ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> F ( ClWalks ` G ) P ) |
6 |
1 5
|
syl |
|- ( F ( Circuits ` G ) P -> F ( ClWalks ` G ) P ) |