Metamath Proof Explorer


Theorem creui

Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion creui
|- ( A e. CC -> E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) )

Proof

Step Hyp Ref Expression
1 cnre
 |-  ( A e. CC -> E. z e. RR E. w e. RR A = ( z + ( _i x. w ) ) )
2 simpr
 |-  ( ( z e. RR /\ w e. RR ) -> w e. RR )
3 eqcom
 |-  ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) )
4 cru
 |-  ( ( ( x e. RR /\ y e. RR ) /\ ( z e. RR /\ w e. RR ) ) -> ( ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) <-> ( x = z /\ y = w ) ) )
5 4 ancoms
 |-  ( ( ( z e. RR /\ w e. RR ) /\ ( x e. RR /\ y e. RR ) ) -> ( ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) <-> ( x = z /\ y = w ) ) )
6 3 5 syl5bb
 |-  ( ( ( z e. RR /\ w e. RR ) /\ ( x e. RR /\ y e. RR ) ) -> ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( x = z /\ y = w ) ) )
7 6 anass1rs
 |-  ( ( ( ( z e. RR /\ w e. RR ) /\ y e. RR ) /\ x e. RR ) -> ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( x = z /\ y = w ) ) )
8 7 rexbidva
 |-  ( ( ( z e. RR /\ w e. RR ) /\ y e. RR ) -> ( E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> E. x e. RR ( x = z /\ y = w ) ) )
9 biidd
 |-  ( x = z -> ( y = w <-> y = w ) )
10 9 ceqsrexv
 |-  ( z e. RR -> ( E. x e. RR ( x = z /\ y = w ) <-> y = w ) )
11 10 ad2antrr
 |-  ( ( ( z e. RR /\ w e. RR ) /\ y e. RR ) -> ( E. x e. RR ( x = z /\ y = w ) <-> y = w ) )
12 8 11 bitrd
 |-  ( ( ( z e. RR /\ w e. RR ) /\ y e. RR ) -> ( E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> y = w ) )
13 12 ralrimiva
 |-  ( ( z e. RR /\ w e. RR ) -> A. y e. RR ( E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> y = w ) )
14 reu6i
 |-  ( ( w e. RR /\ A. y e. RR ( E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> y = w ) ) -> E! y e. RR E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) )
15 2 13 14 syl2anc
 |-  ( ( z e. RR /\ w e. RR ) -> E! y e. RR E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) )
16 eqeq1
 |-  ( A = ( z + ( _i x. w ) ) -> ( A = ( x + ( _i x. y ) ) <-> ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) )
17 16 rexbidv
 |-  ( A = ( z + ( _i x. w ) ) -> ( E. x e. RR A = ( x + ( _i x. y ) ) <-> E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) )
18 17 reubidv
 |-  ( A = ( z + ( _i x. w ) ) -> ( E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) <-> E! y e. RR E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) )
19 15 18 syl5ibrcom
 |-  ( ( z e. RR /\ w e. RR ) -> ( A = ( z + ( _i x. w ) ) -> E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) ) )
20 19 rexlimivv
 |-  ( E. z e. RR E. w e. RR A = ( z + ( _i x. w ) ) -> E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) )
21 1 20 syl
 |-  ( A e. CC -> E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) )