Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
|- ( A e. CC -> E. z e. RR E. w e. RR A = ( z + ( _i x. w ) ) ) |
2 |
|
cru |
|- ( ( ( x e. RR /\ y e. RR ) /\ ( z e. RR /\ w e. RR ) ) -> ( ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) <-> ( x = z /\ y = w ) ) ) |
3 |
2
|
ancoms |
|- ( ( ( z e. RR /\ w e. RR ) /\ ( x e. RR /\ y e. RR ) ) -> ( ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) <-> ( x = z /\ y = w ) ) ) |
4 |
|
eqcom |
|- ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) ) |
5 |
|
ancom |
|- ( ( y = w /\ x = z ) <-> ( x = z /\ y = w ) ) |
6 |
3 4 5
|
3bitr4g |
|- ( ( ( z e. RR /\ w e. RR ) /\ ( x e. RR /\ y e. RR ) ) -> ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( y = w /\ x = z ) ) ) |
7 |
6
|
anassrs |
|- ( ( ( ( z e. RR /\ w e. RR ) /\ x e. RR ) /\ y e. RR ) -> ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( y = w /\ x = z ) ) ) |
8 |
7
|
rexbidva |
|- ( ( ( z e. RR /\ w e. RR ) /\ x e. RR ) -> ( E. y e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> E. y e. RR ( y = w /\ x = z ) ) ) |
9 |
|
biidd |
|- ( y = w -> ( x = z <-> x = z ) ) |
10 |
9
|
ceqsrexv |
|- ( w e. RR -> ( E. y e. RR ( y = w /\ x = z ) <-> x = z ) ) |
11 |
10
|
ad2antlr |
|- ( ( ( z e. RR /\ w e. RR ) /\ x e. RR ) -> ( E. y e. RR ( y = w /\ x = z ) <-> x = z ) ) |
12 |
8 11
|
bitrd |
|- ( ( ( z e. RR /\ w e. RR ) /\ x e. RR ) -> ( E. y e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> x = z ) ) |
13 |
12
|
ralrimiva |
|- ( ( z e. RR /\ w e. RR ) -> A. x e. RR ( E. y e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> x = z ) ) |
14 |
|
reu6i |
|- ( ( z e. RR /\ A. x e. RR ( E. y e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> x = z ) ) -> E! x e. RR E. y e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
15 |
13 14
|
syldan |
|- ( ( z e. RR /\ w e. RR ) -> E! x e. RR E. y e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
16 |
|
eqeq1 |
|- ( A = ( z + ( _i x. w ) ) -> ( A = ( x + ( _i x. y ) ) <-> ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) ) |
17 |
16
|
rexbidv |
|- ( A = ( z + ( _i x. w ) ) -> ( E. y e. RR A = ( x + ( _i x. y ) ) <-> E. y e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) ) |
18 |
17
|
reubidv |
|- ( A = ( z + ( _i x. w ) ) -> ( E! x e. RR E. y e. RR A = ( x + ( _i x. y ) ) <-> E! x e. RR E. y e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) ) |
19 |
15 18
|
syl5ibrcom |
|- ( ( z e. RR /\ w e. RR ) -> ( A = ( z + ( _i x. w ) ) -> E! x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) ) |
20 |
19
|
rexlimivv |
|- ( E. z e. RR E. w e. RR A = ( z + ( _i x. w ) ) -> E! x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
21 |
1 20
|
syl |
|- ( A e. CC -> E! x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |