Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
4 |
|
mulcl |
|- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
5 |
2 3 4
|
sylancr |
|- ( B e. RR -> ( _i x. B ) e. CC ) |
6 |
|
addcl |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) |
7 |
1 5 6
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
8 |
|
imval |
|- ( ( A + ( _i x. B ) ) e. CC -> ( Im ` ( A + ( _i x. B ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
9 |
7 8
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
10 |
2 4
|
mpan |
|- ( B e. CC -> ( _i x. B ) e. CC ) |
11 |
|
ine0 |
|- _i =/= 0 |
12 |
|
divdir |
|- ( ( A e. CC /\ ( _i x. B ) e. CC /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
13 |
12
|
3expa |
|- ( ( ( A e. CC /\ ( _i x. B ) e. CC ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
14 |
2 11 13
|
mpanr12 |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
15 |
10 14
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
16 |
|
divrec2 |
|- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
17 |
2 11 16
|
mp3an23 |
|- ( A e. CC -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
18 |
|
irec |
|- ( 1 / _i ) = -u _i |
19 |
18
|
oveq1i |
|- ( ( 1 / _i ) x. A ) = ( -u _i x. A ) |
20 |
19
|
a1i |
|- ( A e. CC -> ( ( 1 / _i ) x. A ) = ( -u _i x. A ) ) |
21 |
|
mulneg12 |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
22 |
2 21
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) |
23 |
17 20 22
|
3eqtrd |
|- ( A e. CC -> ( A / _i ) = ( _i x. -u A ) ) |
24 |
|
divcan3 |
|- ( ( B e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. B ) / _i ) = B ) |
25 |
2 11 24
|
mp3an23 |
|- ( B e. CC -> ( ( _i x. B ) / _i ) = B ) |
26 |
23 25
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A / _i ) + ( ( _i x. B ) / _i ) ) = ( ( _i x. -u A ) + B ) ) |
27 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
28 |
|
mulcl |
|- ( ( _i e. CC /\ -u A e. CC ) -> ( _i x. -u A ) e. CC ) |
29 |
2 27 28
|
sylancr |
|- ( A e. CC -> ( _i x. -u A ) e. CC ) |
30 |
|
addcom |
|- ( ( ( _i x. -u A ) e. CC /\ B e. CC ) -> ( ( _i x. -u A ) + B ) = ( B + ( _i x. -u A ) ) ) |
31 |
29 30
|
sylan |
|- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. -u A ) + B ) = ( B + ( _i x. -u A ) ) ) |
32 |
15 26 31
|
3eqtrrd |
|- ( ( A e. CC /\ B e. CC ) -> ( B + ( _i x. -u A ) ) = ( ( A + ( _i x. B ) ) / _i ) ) |
33 |
1 3 32
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( B + ( _i x. -u A ) ) = ( ( A + ( _i x. B ) ) / _i ) ) |
34 |
33
|
fveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
35 |
|
id |
|- ( B e. RR -> B e. RR ) |
36 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
37 |
|
crre |
|- ( ( B e. RR /\ -u A e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = B ) |
38 |
35 36 37
|
syl2anr |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = B ) |
39 |
9 34 38
|
3eqtr2d |
|- ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |