| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 4 |
|
mulcl |
|- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
| 5 |
2 3 4
|
sylancr |
|- ( B e. RR -> ( _i x. B ) e. CC ) |
| 6 |
|
addcl |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) |
| 7 |
1 5 6
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
| 8 |
|
imval |
|- ( ( A + ( _i x. B ) ) e. CC -> ( Im ` ( A + ( _i x. B ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
| 9 |
7 8
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
| 10 |
2 4
|
mpan |
|- ( B e. CC -> ( _i x. B ) e. CC ) |
| 11 |
|
ine0 |
|- _i =/= 0 |
| 12 |
|
divdir |
|- ( ( A e. CC /\ ( _i x. B ) e. CC /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
| 13 |
12
|
3expa |
|- ( ( ( A e. CC /\ ( _i x. B ) e. CC ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
| 14 |
2 11 13
|
mpanr12 |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
| 15 |
10 14
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) |
| 16 |
|
divrec2 |
|- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
| 17 |
2 11 16
|
mp3an23 |
|- ( A e. CC -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
| 18 |
|
irec |
|- ( 1 / _i ) = -u _i |
| 19 |
18
|
oveq1i |
|- ( ( 1 / _i ) x. A ) = ( -u _i x. A ) |
| 20 |
19
|
a1i |
|- ( A e. CC -> ( ( 1 / _i ) x. A ) = ( -u _i x. A ) ) |
| 21 |
|
mulneg12 |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 22 |
2 21
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 23 |
17 20 22
|
3eqtrd |
|- ( A e. CC -> ( A / _i ) = ( _i x. -u A ) ) |
| 24 |
|
divcan3 |
|- ( ( B e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. B ) / _i ) = B ) |
| 25 |
2 11 24
|
mp3an23 |
|- ( B e. CC -> ( ( _i x. B ) / _i ) = B ) |
| 26 |
23 25
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A / _i ) + ( ( _i x. B ) / _i ) ) = ( ( _i x. -u A ) + B ) ) |
| 27 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 28 |
|
mulcl |
|- ( ( _i e. CC /\ -u A e. CC ) -> ( _i x. -u A ) e. CC ) |
| 29 |
2 27 28
|
sylancr |
|- ( A e. CC -> ( _i x. -u A ) e. CC ) |
| 30 |
|
addcom |
|- ( ( ( _i x. -u A ) e. CC /\ B e. CC ) -> ( ( _i x. -u A ) + B ) = ( B + ( _i x. -u A ) ) ) |
| 31 |
29 30
|
sylan |
|- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. -u A ) + B ) = ( B + ( _i x. -u A ) ) ) |
| 32 |
15 26 31
|
3eqtrrd |
|- ( ( A e. CC /\ B e. CC ) -> ( B + ( _i x. -u A ) ) = ( ( A + ( _i x. B ) ) / _i ) ) |
| 33 |
1 3 32
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( B + ( _i x. -u A ) ) = ( ( A + ( _i x. B ) ) / _i ) ) |
| 34 |
33
|
fveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) |
| 35 |
|
id |
|- ( B e. RR -> B e. RR ) |
| 36 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 37 |
|
crre |
|- ( ( B e. RR /\ -u A e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = B ) |
| 38 |
35 36 37
|
syl2anr |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = B ) |
| 39 |
9 34 38
|
3eqtr2d |
|- ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |