Description: Commutative/associative law that swaps the last two factors in a triple product in a commutative ring. See also mul32 . (Contributed by Thierry Arnoux, 4-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cringmul32d.b | |- B = ( Base ` R ) |
|
cringmul32d.t | |- .x. = ( .r ` R ) |
||
cringmul32d.r | |- ( ph -> R e. CRing ) |
||
cringmul32d.x | |- ( ph -> X e. B ) |
||
cringmul32d.y | |- ( ph -> Y e. B ) |
||
cringmul32d.z | |- ( ph -> Z e. B ) |
||
Assertion | cringmul32d | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( X .x. Z ) .x. Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cringmul32d.b | |- B = ( Base ` R ) |
|
2 | cringmul32d.t | |- .x. = ( .r ` R ) |
|
3 | cringmul32d.r | |- ( ph -> R e. CRing ) |
|
4 | cringmul32d.x | |- ( ph -> X e. B ) |
|
5 | cringmul32d.y | |- ( ph -> Y e. B ) |
|
6 | cringmul32d.z | |- ( ph -> Z e. B ) |
|
7 | 1 2 3 5 6 | crngcomd | |- ( ph -> ( Y .x. Z ) = ( Z .x. Y ) ) |
8 | 7 | oveq2d | |- ( ph -> ( X .x. ( Y .x. Z ) ) = ( X .x. ( Z .x. Y ) ) ) |
9 | 3 | crngringd | |- ( ph -> R e. Ring ) |
10 | 1 2 9 4 5 6 | ringassd | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
11 | 1 2 9 4 6 5 | ringassd | |- ( ph -> ( ( X .x. Z ) .x. Y ) = ( X .x. ( Z .x. Y ) ) ) |
12 | 8 10 11 | 3eqtr4d | |- ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( X .x. Z ) .x. Y ) ) |