Metamath Proof Explorer


Theorem cringmul32d

Description: Commutative/associative law that swaps the last two factors in a triple product in a commutative ring. See also mul32 . (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses cringmul32d.b
|- B = ( Base ` R )
cringmul32d.t
|- .x. = ( .r ` R )
cringmul32d.r
|- ( ph -> R e. CRing )
cringmul32d.x
|- ( ph -> X e. B )
cringmul32d.y
|- ( ph -> Y e. B )
cringmul32d.z
|- ( ph -> Z e. B )
Assertion cringmul32d
|- ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( X .x. Z ) .x. Y ) )

Proof

Step Hyp Ref Expression
1 cringmul32d.b
 |-  B = ( Base ` R )
2 cringmul32d.t
 |-  .x. = ( .r ` R )
3 cringmul32d.r
 |-  ( ph -> R e. CRing )
4 cringmul32d.x
 |-  ( ph -> X e. B )
5 cringmul32d.y
 |-  ( ph -> Y e. B )
6 cringmul32d.z
 |-  ( ph -> Z e. B )
7 1 2 3 5 6 crngcomd
 |-  ( ph -> ( Y .x. Z ) = ( Z .x. Y ) )
8 7 oveq2d
 |-  ( ph -> ( X .x. ( Y .x. Z ) ) = ( X .x. ( Z .x. Y ) ) )
9 3 crngringd
 |-  ( ph -> R e. Ring )
10 1 2 9 4 5 6 ringassd
 |-  ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) )
11 1 2 9 4 6 5 ringassd
 |-  ( ph -> ( ( X .x. Z ) .x. Y ) = ( X .x. ( Z .x. Y ) ) )
12 8 10 11 3eqtr4d
 |-  ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( X .x. Z ) .x. Y ) )