Step |
Hyp |
Ref |
Expression |
1 |
|
neorian |
|- ( ( A =/= 0 \/ B =/= 0 ) <-> -. ( A = 0 /\ B = 0 ) ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
2
|
mul01i |
|- ( _i x. 0 ) = 0 |
4 |
3
|
oveq2i |
|- ( 0 + ( _i x. 0 ) ) = ( 0 + 0 ) |
5 |
|
00id |
|- ( 0 + 0 ) = 0 |
6 |
4 5
|
eqtri |
|- ( 0 + ( _i x. 0 ) ) = 0 |
7 |
6
|
eqeq2i |
|- ( ( A + ( _i x. B ) ) = ( 0 + ( _i x. 0 ) ) <-> ( A + ( _i x. B ) ) = 0 ) |
8 |
|
0re |
|- 0 e. RR |
9 |
|
cru |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 e. RR /\ 0 e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( 0 + ( _i x. 0 ) ) <-> ( A = 0 /\ B = 0 ) ) ) |
10 |
8 8 9
|
mpanr12 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) = ( 0 + ( _i x. 0 ) ) <-> ( A = 0 /\ B = 0 ) ) ) |
11 |
7 10
|
bitr3id |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
12 |
11
|
necon3abid |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) =/= 0 <-> -. ( A = 0 /\ B = 0 ) ) ) |
13 |
1 12
|
bitr4id |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A =/= 0 \/ B =/= 0 ) <-> ( A + ( _i x. B ) ) =/= 0 ) ) |