| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crng12d.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | crng12d.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | crng12d.r |  |-  ( ph -> R e. CRing ) | 
						
							| 4 |  | crng12d.1 |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | crng12d.2 |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | crng12d.3 |  |-  ( ph -> Z e. B ) | 
						
							| 7 | 1 2 3 4 5 | crngcomd |  |-  ( ph -> ( X .x. Y ) = ( Y .x. X ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( Y .x. X ) .x. Z ) ) | 
						
							| 9 | 3 | crngringd |  |-  ( ph -> R e. Ring ) | 
						
							| 10 | 1 2 9 4 5 6 | ringassd |  |-  ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) | 
						
							| 11 | 1 2 9 5 4 6 | ringassd |  |-  ( ph -> ( ( Y .x. X ) .x. Z ) = ( Y .x. ( X .x. Z ) ) ) | 
						
							| 12 | 8 10 11 | 3eqtr3d |  |-  ( ph -> ( X .x. ( Y .x. Z ) ) = ( Y .x. ( X .x. Z ) ) ) |