| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							crng2idl.i | 
							 |-  I = ( LIdeal ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							inidm | 
							 |-  ( I i^i I ) = I  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( oppR ` R ) = ( oppR ` R )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							crngridl | 
							 |-  ( R e. CRing -> I = ( LIdeal ` ( oppR ` R ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ineq2d | 
							 |-  ( R e. CRing -> ( I i^i I ) = ( I i^i ( LIdeal ` ( oppR ` R ) ) ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							eqtr3id | 
							 |-  ( R e. CRing -> I = ( I i^i ( LIdeal ` ( oppR ` R ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( 2Ideal ` R ) = ( 2Ideal ` R )  | 
						
						
							| 9 | 
							
								1 3 7 8
							 | 
							2idlval | 
							 |-  ( 2Ideal ` R ) = ( I i^i ( LIdeal ` ( oppR ` R ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							eqtr4di | 
							 |-  ( R e. CRing -> I = ( 2Ideal ` R ) )  |