Description: The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | crngbascntr.b | |- B = ( Base ` G ) |
|
crngbascntr.z | |- Z = ( Cntr ` ( mulGrp ` G ) ) |
||
Assertion | crngbascntr | |- ( G e. CRing -> B = Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngbascntr.b | |- B = ( Base ` G ) |
|
2 | crngbascntr.z | |- Z = ( Cntr ` ( mulGrp ` G ) ) |
|
3 | eqid | |- ( mulGrp ` G ) = ( mulGrp ` G ) |
|
4 | 3 | crngmgp | |- ( G e. CRing -> ( mulGrp ` G ) e. CMnd ) |
5 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` G ) ) |
6 | 5 2 | cmnbascntr | |- ( ( mulGrp ` G ) e. CMnd -> B = Z ) |
7 | 4 6 | syl | |- ( G e. CRing -> B = Z ) |