Metamath Proof Explorer


Theorem crngbascntr

Description: The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses crngbascntr.b
|- B = ( Base ` G )
crngbascntr.z
|- Z = ( Cntr ` ( mulGrp ` G ) )
Assertion crngbascntr
|- ( G e. CRing -> B = Z )

Proof

Step Hyp Ref Expression
1 crngbascntr.b
 |-  B = ( Base ` G )
2 crngbascntr.z
 |-  Z = ( Cntr ` ( mulGrp ` G ) )
3 eqid
 |-  ( mulGrp ` G ) = ( mulGrp ` G )
4 3 crngmgp
 |-  ( G e. CRing -> ( mulGrp ` G ) e. CMnd )
5 3 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` G ) )
6 5 2 cmnbascntr
 |-  ( ( mulGrp ` G ) e. CMnd -> B = Z )
7 4 6 syl
 |-  ( G e. CRing -> B = Z )