Step |
Hyp |
Ref |
Expression |
1 |
|
crngbinom.s |
|- S = ( Base ` R ) |
2 |
|
crngbinom.m |
|- .X. = ( .r ` R ) |
3 |
|
crngbinom.t |
|- .x. = ( .g ` R ) |
4 |
|
crngbinom.a |
|- .+ = ( +g ` R ) |
5 |
|
crngbinom.g |
|- G = ( mulGrp ` R ) |
6 |
|
crngbinom.e |
|- .^ = ( .g ` G ) |
7 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
8 |
|
ringsrg |
|- ( R e. Ring -> R e. SRing ) |
9 |
7 8
|
syl |
|- ( R e. CRing -> R e. SRing ) |
10 |
9
|
adantr |
|- ( ( R e. CRing /\ N e. NN0 ) -> R e. SRing ) |
11 |
5
|
crngmgp |
|- ( R e. CRing -> G e. CMnd ) |
12 |
11
|
adantr |
|- ( ( R e. CRing /\ N e. NN0 ) -> G e. CMnd ) |
13 |
|
simpr |
|- ( ( R e. CRing /\ N e. NN0 ) -> N e. NN0 ) |
14 |
10 12 13
|
3jca |
|- ( ( R e. CRing /\ N e. NN0 ) -> ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) ) |
15 |
1 2 3 4 5 6
|
csrgbinom |
|- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
16 |
14 15
|
sylan |
|- ( ( ( R e. CRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |