Metamath Proof Explorer


Theorem crngbinom

Description: The binomial theorem for commutative rings (special case of csrgbinom ): ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses crngbinom.s
|- S = ( Base ` R )
crngbinom.m
|- .X. = ( .r ` R )
crngbinom.t
|- .x. = ( .g ` R )
crngbinom.a
|- .+ = ( +g ` R )
crngbinom.g
|- G = ( mulGrp ` R )
crngbinom.e
|- .^ = ( .g ` G )
Assertion crngbinom
|- ( ( ( R e. CRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 crngbinom.s
 |-  S = ( Base ` R )
2 crngbinom.m
 |-  .X. = ( .r ` R )
3 crngbinom.t
 |-  .x. = ( .g ` R )
4 crngbinom.a
 |-  .+ = ( +g ` R )
5 crngbinom.g
 |-  G = ( mulGrp ` R )
6 crngbinom.e
 |-  .^ = ( .g ` G )
7 crngring
 |-  ( R e. CRing -> R e. Ring )
8 ringsrg
 |-  ( R e. Ring -> R e. SRing )
9 7 8 syl
 |-  ( R e. CRing -> R e. SRing )
10 9 adantr
 |-  ( ( R e. CRing /\ N e. NN0 ) -> R e. SRing )
11 5 crngmgp
 |-  ( R e. CRing -> G e. CMnd )
12 11 adantr
 |-  ( ( R e. CRing /\ N e. NN0 ) -> G e. CMnd )
13 simpr
 |-  ( ( R e. CRing /\ N e. NN0 ) -> N e. NN0 )
14 10 12 13 3jca
 |-  ( ( R e. CRing /\ N e. NN0 ) -> ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) )
15 1 2 3 4 5 6 csrgbinom
 |-  ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) )
16 14 15 sylan
 |-  ( ( ( R e. CRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) )