Metamath Proof Explorer


Theorem crngcom

Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses ringcl.b
|- B = ( Base ` R )
ringcl.t
|- .x. = ( .r ` R )
Assertion crngcom
|- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) )

Proof

Step Hyp Ref Expression
1 ringcl.b
 |-  B = ( Base ` R )
2 ringcl.t
 |-  .x. = ( .r ` R )
3 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
4 3 crngmgp
 |-  ( R e. CRing -> ( mulGrp ` R ) e. CMnd )
5 3 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
6 3 2 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
7 5 6 cmncom
 |-  ( ( ( mulGrp ` R ) e. CMnd /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) )
8 4 7 syl3an1
 |-  ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) )