Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringcl.b | |- B = ( Base ` R ) |
|
ringcl.t | |- .x. = ( .r ` R ) |
||
Assertion | crngcom | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcl.b | |- B = ( Base ` R ) |
|
2 | ringcl.t | |- .x. = ( .r ` R ) |
|
3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
4 | 3 | crngmgp | |- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
5 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
6 | 3 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
7 | 5 6 | cmncom | |- ( ( ( mulGrp ` R ) e. CMnd /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) ) |
8 | 4 7 | syl3an1 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) ) |