Step |
Hyp |
Ref |
Expression |
1 |
|
crngm.1 |
|- G = ( 1st ` R ) |
2 |
|
crngm.2 |
|- H = ( 2nd ` R ) |
3 |
|
crngm.3 |
|- X = ran G |
4 |
1 2 3
|
crngocom |
|- ( ( R e. CRingOps /\ B e. X /\ C e. X ) -> ( B H C ) = ( C H B ) ) |
5 |
4
|
3adant3r1 |
|- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B H C ) = ( C H B ) ) |
6 |
5
|
oveq2d |
|- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B H C ) ) = ( A H ( C H B ) ) ) |
7 |
|
crngorngo |
|- ( R e. CRingOps -> R e. RingOps ) |
8 |
1 2 3
|
rngoass |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) H C ) = ( A H ( B H C ) ) ) |
9 |
7 8
|
sylan |
|- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) H C ) = ( A H ( B H C ) ) ) |
10 |
1 2 3
|
rngoass |
|- ( ( R e. RingOps /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) |
11 |
10
|
3exp2 |
|- ( R e. RingOps -> ( A e. X -> ( C e. X -> ( B e. X -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) ) ) ) |
12 |
11
|
com34 |
|- ( R e. RingOps -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) ) ) ) |
13 |
12
|
3imp2 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) |
14 |
7 13
|
sylan |
|- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) |
15 |
6 9 14
|
3eqtr4d |
|- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) H C ) = ( ( A H C ) H B ) ) |