Metamath Proof Explorer


Theorem crngmgp

Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypothesis ringmgp.g
|- G = ( mulGrp ` R )
Assertion crngmgp
|- ( R e. CRing -> G e. CMnd )

Proof

Step Hyp Ref Expression
1 ringmgp.g
 |-  G = ( mulGrp ` R )
2 1 iscrng
 |-  ( R e. CRing <-> ( R e. Ring /\ G e. CMnd ) )
3 2 simprbi
 |-  ( R e. CRing -> G e. CMnd )