| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							crngocom.1 | 
							 |-  G = ( 1st ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							crngocom.2 | 
							 |-  H = ( 2nd ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							crngocom.3 | 
							 |-  X = ran G  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							iscrngo2 | 
							 |-  ( R e. CRingOps <-> ( R e. RingOps /\ A. x e. X A. y e. X ( x H y ) = ( y H x ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							simprbi | 
							 |-  ( R e. CRingOps -> A. x e. X A. y e. X ( x H y ) = ( y H x ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = A -> ( x H y ) = ( A H y ) )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = A -> ( y H x ) = ( y H A ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqeq12d | 
							 |-  ( x = A -> ( ( x H y ) = ( y H x ) <-> ( A H y ) = ( y H A ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = B -> ( A H y ) = ( A H B ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = B -> ( y H A ) = ( B H A ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqeq12d | 
							 |-  ( y = B -> ( ( A H y ) = ( y H A ) <-> ( A H B ) = ( B H A ) ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							rspc2v | 
							 |-  ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( x H y ) = ( y H x ) -> ( A H B ) = ( B H A ) ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							mpan9 | 
							 |-  ( ( R e. CRingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) = ( B H A ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3impb | 
							 |-  ( ( R e. CRingOps /\ A e. X /\ B e. X ) -> ( A H B ) = ( B H A ) )  |