Step |
Hyp |
Ref |
Expression |
1 |
|
crnghomfo.1 |
|- G = ( 1st ` R ) |
2 |
|
crnghomfo.2 |
|- X = ran G |
3 |
|
crnghomfo.3 |
|- J = ( 1st ` S ) |
4 |
|
crnghomfo.4 |
|- Y = ran J |
5 |
|
simplr |
|- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RngHom S ) /\ F : X -onto-> Y ) ) -> S e. RingOps ) |
6 |
|
foelrn |
|- ( ( F : X -onto-> Y /\ y e. Y ) -> E. w e. X y = ( F ` w ) ) |
7 |
6
|
ex |
|- ( F : X -onto-> Y -> ( y e. Y -> E. w e. X y = ( F ` w ) ) ) |
8 |
|
foelrn |
|- ( ( F : X -onto-> Y /\ z e. Y ) -> E. x e. X z = ( F ` x ) ) |
9 |
8
|
ex |
|- ( F : X -onto-> Y -> ( z e. Y -> E. x e. X z = ( F ` x ) ) ) |
10 |
7 9
|
anim12d |
|- ( F : X -onto-> Y -> ( ( y e. Y /\ z e. Y ) -> ( E. w e. X y = ( F ` w ) /\ E. x e. X z = ( F ` x ) ) ) ) |
11 |
|
reeanv |
|- ( E. w e. X E. x e. X ( y = ( F ` w ) /\ z = ( F ` x ) ) <-> ( E. w e. X y = ( F ` w ) /\ E. x e. X z = ( F ` x ) ) ) |
12 |
10 11
|
syl6ibr |
|- ( F : X -onto-> Y -> ( ( y e. Y /\ z e. Y ) -> E. w e. X E. x e. X ( y = ( F ` w ) /\ z = ( F ` x ) ) ) ) |
13 |
12
|
ad2antll |
|- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RngHom S ) /\ F : X -onto-> Y ) ) -> ( ( y e. Y /\ z e. Y ) -> E. w e. X E. x e. X ( y = ( F ` w ) /\ z = ( F ` x ) ) ) ) |
14 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
15 |
1 14 2
|
crngocom |
|- ( ( R e. CRingOps /\ w e. X /\ x e. X ) -> ( w ( 2nd ` R ) x ) = ( x ( 2nd ` R ) w ) ) |
16 |
15
|
3expb |
|- ( ( R e. CRingOps /\ ( w e. X /\ x e. X ) ) -> ( w ( 2nd ` R ) x ) = ( x ( 2nd ` R ) w ) ) |
17 |
16
|
3ad2antl1 |
|- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( w ( 2nd ` R ) x ) = ( x ( 2nd ` R ) w ) ) |
18 |
17
|
fveq2d |
|- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( w ( 2nd ` R ) x ) ) = ( F ` ( x ( 2nd ` R ) w ) ) ) |
19 |
|
crngorngo |
|- ( R e. CRingOps -> R e. RingOps ) |
20 |
|
eqid |
|- ( 2nd ` S ) = ( 2nd ` S ) |
21 |
1 2 14 20
|
rngohommul |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( w ( 2nd ` R ) x ) ) = ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) ) |
22 |
19 21
|
syl3anl1 |
|- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( w ( 2nd ` R ) x ) ) = ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) ) |
23 |
1 2 14 20
|
rngohommul |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( x e. X /\ w e. X ) ) -> ( F ` ( x ( 2nd ` R ) w ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
24 |
23
|
ancom2s |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( x ( 2nd ` R ) w ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
25 |
19 24
|
syl3anl1 |
|- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( x ( 2nd ` R ) w ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
26 |
18 22 25
|
3eqtr3d |
|- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
27 |
|
oveq12 |
|- ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) ) |
28 |
|
oveq12 |
|- ( ( z = ( F ` x ) /\ y = ( F ` w ) ) -> ( z ( 2nd ` S ) y ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
29 |
28
|
ancoms |
|- ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( z ( 2nd ` S ) y ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
30 |
27 29
|
eqeq12d |
|- ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) <-> ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) ) |
31 |
26 30
|
syl5ibrcom |
|- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) |
32 |
31
|
ex |
|- ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RngHom S ) ) -> ( ( w e. X /\ x e. X ) -> ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) ) |
33 |
32
|
3expa |
|- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ F e. ( R RngHom S ) ) -> ( ( w e. X /\ x e. X ) -> ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) ) |
34 |
33
|
adantrr |
|- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RngHom S ) /\ F : X -onto-> Y ) ) -> ( ( w e. X /\ x e. X ) -> ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) ) |
35 |
34
|
rexlimdvv |
|- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RngHom S ) /\ F : X -onto-> Y ) ) -> ( E. w e. X E. x e. X ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) |
36 |
13 35
|
syld |
|- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RngHom S ) /\ F : X -onto-> Y ) ) -> ( ( y e. Y /\ z e. Y ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) |
37 |
36
|
ralrimivv |
|- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RngHom S ) /\ F : X -onto-> Y ) ) -> A. y e. Y A. z e. Y ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) |
38 |
3 20 4
|
iscrngo2 |
|- ( S e. CRingOps <-> ( S e. RingOps /\ A. y e. Y A. z e. Y ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) |
39 |
5 37 38
|
sylanbrc |
|- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RngHom S ) /\ F : X -onto-> Y ) ) -> S e. CRingOps ) |