Description: In a commutative ring, the opposite ring is equivalent to the original ring (for theorems like unitpropd ). (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprval.1 | |- B = ( Base ` R ) |
|
| opprval.2 | |- .x. = ( .r ` R ) |
||
| opprval.3 | |- O = ( oppR ` R ) |
||
| opprmulfval.4 | |- .xb = ( .r ` O ) |
||
| Assertion | crngoppr | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( X .xb Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | |- B = ( Base ` R ) |
|
| 2 | opprval.2 | |- .x. = ( .r ` R ) |
|
| 3 | opprval.3 | |- O = ( oppR ` R ) |
|
| 4 | opprmulfval.4 | |- .xb = ( .r ` O ) |
|
| 5 | 1 2 | crngcom | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) ) |
| 6 | 1 2 3 4 | opprmul | |- ( X .xb Y ) = ( Y .x. X ) |
| 7 | 5 6 | eqtr4di | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( X .xb Y ) ) |