Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crngorngo | |- ( R e. CRingOps -> R e. RingOps )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iscrngo | |- ( R e. CRingOps <-> ( R e. RingOps /\ R e. Com2 ) )  | 
						|
| 2 | 1 | simplbi | |- ( R e. CRingOps -> R e. RingOps )  |