| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringpropd.1 |  |-  ( ph -> B = ( Base ` K ) ) | 
						
							| 2 |  | ringpropd.2 |  |-  ( ph -> B = ( Base ` L ) ) | 
						
							| 3 |  | ringpropd.3 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) | 
						
							| 4 |  | ringpropd.4 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) | 
						
							| 5 | 1 2 3 4 | ringpropd |  |-  ( ph -> ( K e. Ring <-> L e. Ring ) ) | 
						
							| 6 |  | eqid |  |-  ( mulGrp ` K ) = ( mulGrp ` K ) | 
						
							| 7 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 8 | 6 7 | mgpbas |  |-  ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) | 
						
							| 9 | 1 8 | eqtrdi |  |-  ( ph -> B = ( Base ` ( mulGrp ` K ) ) ) | 
						
							| 10 |  | eqid |  |-  ( mulGrp ` L ) = ( mulGrp ` L ) | 
						
							| 11 |  | eqid |  |-  ( Base ` L ) = ( Base ` L ) | 
						
							| 12 | 10 11 | mgpbas |  |-  ( Base ` L ) = ( Base ` ( mulGrp ` L ) ) | 
						
							| 13 | 2 12 | eqtrdi |  |-  ( ph -> B = ( Base ` ( mulGrp ` L ) ) ) | 
						
							| 14 |  | eqid |  |-  ( .r ` K ) = ( .r ` K ) | 
						
							| 15 | 6 14 | mgpplusg |  |-  ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) | 
						
							| 16 | 15 | oveqi |  |-  ( x ( .r ` K ) y ) = ( x ( +g ` ( mulGrp ` K ) ) y ) | 
						
							| 17 |  | eqid |  |-  ( .r ` L ) = ( .r ` L ) | 
						
							| 18 | 10 17 | mgpplusg |  |-  ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) | 
						
							| 19 | 18 | oveqi |  |-  ( x ( .r ` L ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) | 
						
							| 20 | 4 16 19 | 3eqtr3g |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) ) | 
						
							| 21 | 9 13 20 | cmnpropd |  |-  ( ph -> ( ( mulGrp ` K ) e. CMnd <-> ( mulGrp ` L ) e. CMnd ) ) | 
						
							| 22 | 5 21 | anbi12d |  |-  ( ph -> ( ( K e. Ring /\ ( mulGrp ` K ) e. CMnd ) <-> ( L e. Ring /\ ( mulGrp ` L ) e. CMnd ) ) ) | 
						
							| 23 | 6 | iscrng |  |-  ( K e. CRing <-> ( K e. Ring /\ ( mulGrp ` K ) e. CMnd ) ) | 
						
							| 24 | 10 | iscrng |  |-  ( L e. CRing <-> ( L e. Ring /\ ( mulGrp ` L ) e. CMnd ) ) | 
						
							| 25 | 22 23 24 | 3bitr4g |  |-  ( ph -> ( K e. CRing <-> L e. CRing ) ) |