Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | crngring | |- ( R e. CRing -> R e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
2 | 1 | iscrng | |- ( R e. CRing <-> ( R e. Ring /\ ( mulGrp ` R ) e. CMnd ) ) |
3 | 2 | simplbi | |- ( R e. CRing -> R e. Ring ) |