Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crngring | |- ( R e. CRing -> R e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 2 | 1 | iscrng | |- ( R e. CRing <-> ( R e. Ring /\ ( mulGrp ` R ) e. CMnd ) ) |
| 3 | 2 | simplbi | |- ( R e. CRing -> R e. Ring ) |