Metamath Proof Explorer


Theorem crngringd

Description: A commutative ring is a ring. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis crngringd.1
|- ( ph -> R e. CRing )
Assertion crngringd
|- ( ph -> R e. Ring )

Proof

Step Hyp Ref Expression
1 crngringd.1
 |-  ( ph -> R e. CRing )
2 crngring
 |-  ( R e. CRing -> R e. Ring )
3 1 2 syl
 |-  ( ph -> R e. Ring )