Step |
Hyp |
Ref |
Expression |
1 |
|
crngunit.1 |
|- U = ( Unit ` R ) |
2 |
|
crngunit.2 |
|- .1. = ( 1r ` R ) |
3 |
|
crngunit.3 |
|- .|| = ( ||r ` R ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
6 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
7 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
8 |
4 5 6 7
|
crngoppr |
|- ( ( R e. CRing /\ y e. ( Base ` R ) /\ X e. ( Base ` R ) ) -> ( y ( .r ` R ) X ) = ( y ( .r ` ( oppR ` R ) ) X ) ) |
9 |
8
|
3expa |
|- ( ( ( R e. CRing /\ y e. ( Base ` R ) ) /\ X e. ( Base ` R ) ) -> ( y ( .r ` R ) X ) = ( y ( .r ` ( oppR ` R ) ) X ) ) |
10 |
9
|
eqcomd |
|- ( ( ( R e. CRing /\ y e. ( Base ` R ) ) /\ X e. ( Base ` R ) ) -> ( y ( .r ` ( oppR ` R ) ) X ) = ( y ( .r ` R ) X ) ) |
11 |
10
|
an32s |
|- ( ( ( R e. CRing /\ X e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( y ( .r ` ( oppR ` R ) ) X ) = ( y ( .r ` R ) X ) ) |
12 |
11
|
eqeq1d |
|- ( ( ( R e. CRing /\ X e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( ( y ( .r ` ( oppR ` R ) ) X ) = .1. <-> ( y ( .r ` R ) X ) = .1. ) ) |
13 |
12
|
rexbidva |
|- ( ( R e. CRing /\ X e. ( Base ` R ) ) -> ( E. y e. ( Base ` R ) ( y ( .r ` ( oppR ` R ) ) X ) = .1. <-> E. y e. ( Base ` R ) ( y ( .r ` R ) X ) = .1. ) ) |
14 |
13
|
pm5.32da |
|- ( R e. CRing -> ( ( X e. ( Base ` R ) /\ E. y e. ( Base ` R ) ( y ( .r ` ( oppR ` R ) ) X ) = .1. ) <-> ( X e. ( Base ` R ) /\ E. y e. ( Base ` R ) ( y ( .r ` R ) X ) = .1. ) ) ) |
15 |
6 4
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
16 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
17 |
15 16 7
|
dvdsr |
|- ( X ( ||r ` ( oppR ` R ) ) .1. <-> ( X e. ( Base ` R ) /\ E. y e. ( Base ` R ) ( y ( .r ` ( oppR ` R ) ) X ) = .1. ) ) |
18 |
4 3 5
|
dvdsr |
|- ( X .|| .1. <-> ( X e. ( Base ` R ) /\ E. y e. ( Base ` R ) ( y ( .r ` R ) X ) = .1. ) ) |
19 |
14 17 18
|
3bitr4g |
|- ( R e. CRing -> ( X ( ||r ` ( oppR ` R ) ) .1. <-> X .|| .1. ) ) |
20 |
19
|
anbi2d |
|- ( R e. CRing -> ( ( X .|| .1. /\ X ( ||r ` ( oppR ` R ) ) .1. ) <-> ( X .|| .1. /\ X .|| .1. ) ) ) |
21 |
1 2 3 6 16
|
isunit |
|- ( X e. U <-> ( X .|| .1. /\ X ( ||r ` ( oppR ` R ) ) .1. ) ) |
22 |
|
pm4.24 |
|- ( X .|| .1. <-> ( X .|| .1. /\ X .|| .1. ) ) |
23 |
20 21 22
|
3bitr4g |
|- ( R e. CRing -> ( X e. U <-> X .|| .1. ) ) |