Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
4 |
|
mulcl |
|- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
5 |
2 3 4
|
sylancr |
|- ( B e. RR -> ( _i x. B ) e. CC ) |
6 |
|
addcl |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) |
7 |
1 5 6
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
8 |
|
reval |
|- ( ( A + ( _i x. B ) ) e. CC -> ( Re ` ( A + ( _i x. B ) ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) |
9 |
7 8
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) |
10 |
|
cjcl |
|- ( ( A + ( _i x. B ) ) e. CC -> ( * ` ( A + ( _i x. B ) ) ) e. CC ) |
11 |
7 10
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) e. CC ) |
12 |
7 11
|
addcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) e. CC ) |
13 |
12
|
halfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. CC ) |
14 |
1
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
15 |
|
recl |
|- ( ( A + ( _i x. B ) ) e. CC -> ( Re ` ( A + ( _i x. B ) ) ) e. RR ) |
16 |
7 15
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) e. RR ) |
17 |
9 16
|
eqeltrrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. RR ) |
18 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
19 |
17 18
|
resubcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) e. RR ) |
20 |
2
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> _i e. CC ) |
21 |
3
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
22 |
2 21 4
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. B ) e. CC ) |
23 |
7 11
|
subcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) e. CC ) |
24 |
23
|
halfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. CC ) |
25 |
20 22 24
|
subdid |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) = ( ( _i x. ( _i x. B ) ) - ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
26 |
14 22 14
|
pnpcand |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( A + A ) ) = ( ( _i x. B ) - A ) ) |
27 |
22 14 22
|
pnpcan2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) = ( ( _i x. B ) - A ) ) |
28 |
26 27
|
eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( A + A ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) ) |
29 |
28
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) - ( A + A ) ) + ( * ` ( A + ( _i x. B ) ) ) ) = ( ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
30 |
14 14
|
addcld |
|- ( ( A e. RR /\ B e. RR ) -> ( A + A ) e. CC ) |
31 |
7 11 30
|
addsubd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) = ( ( ( A + ( _i x. B ) ) - ( A + A ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
32 |
22 22
|
addcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. B ) + ( _i x. B ) ) e. CC ) |
33 |
32 7 11
|
subsubd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) = ( ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
34 |
29 31 33
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
35 |
14
|
2timesd |
|- ( ( A e. RR /\ B e. RR ) -> ( 2 x. A ) = ( A + A ) ) |
36 |
35
|
oveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) ) |
37 |
22
|
2timesd |
|- ( ( A e. RR /\ B e. RR ) -> ( 2 x. ( _i x. B ) ) = ( ( _i x. B ) + ( _i x. B ) ) ) |
38 |
37
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
39 |
34 36 38
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) = ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
40 |
39
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) / 2 ) = ( ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) |
41 |
|
2cn |
|- 2 e. CC |
42 |
|
mulcl |
|- ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) |
43 |
41 14 42
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( 2 x. A ) e. CC ) |
44 |
41
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> 2 e. CC ) |
45 |
|
2ne0 |
|- 2 =/= 0 |
46 |
45
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> 2 =/= 0 ) |
47 |
12 43 44 46
|
divsubdird |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) / 2 ) = ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) ) |
48 |
|
mulcl |
|- ( ( 2 e. CC /\ ( _i x. B ) e. CC ) -> ( 2 x. ( _i x. B ) ) e. CC ) |
49 |
41 22 48
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( 2 x. ( _i x. B ) ) e. CC ) |
50 |
49 23 44 46
|
divsubdird |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) = ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
51 |
40 47 50
|
3eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) = ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
52 |
14 44 46
|
divcan3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. A ) / 2 ) = A ) |
53 |
52
|
oveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) = ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) |
54 |
22 44 46
|
divcan3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. ( _i x. B ) ) / 2 ) = ( _i x. B ) ) |
55 |
54
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) = ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
56 |
51 53 55
|
3eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
57 |
56
|
oveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) = ( _i x. ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
58 |
20 20 21
|
mulassd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) = ( _i x. ( _i x. B ) ) ) |
59 |
20 23 44 46
|
divassd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) = ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
60 |
58 59
|
oveq12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) = ( ( _i x. ( _i x. B ) ) - ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
61 |
25 57 60
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) = ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) ) |
62 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
63 |
|
neg1rr |
|- -u 1 e. RR |
64 |
62 63
|
eqeltri |
|- ( _i x. _i ) e. RR |
65 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
66 |
|
remulcl |
|- ( ( ( _i x. _i ) e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) e. RR ) |
67 |
64 65 66
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) e. RR ) |
68 |
|
cjth |
|- ( ( A + ( _i x. B ) ) e. CC -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) e. RR /\ ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) ) |
69 |
68
|
simprd |
|- ( ( A + ( _i x. B ) ) e. CC -> ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) |
70 |
7 69
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) |
71 |
70
|
rehalfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) e. RR ) |
72 |
67 71
|
resubcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) e. RR ) |
73 |
61 72
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) e. RR ) |
74 |
|
rimul |
|- ( ( ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) e. RR /\ ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = 0 ) |
75 |
19 73 74
|
syl2anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = 0 ) |
76 |
13 14 75
|
subeq0d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) = A ) |
77 |
9 76
|
eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |