| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 4 |
|
mulcl |
|- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
| 5 |
2 3 4
|
sylancr |
|- ( B e. RR -> ( _i x. B ) e. CC ) |
| 6 |
|
addcl |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) |
| 7 |
1 5 6
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
| 8 |
|
reval |
|- ( ( A + ( _i x. B ) ) e. CC -> ( Re ` ( A + ( _i x. B ) ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) |
| 9 |
7 8
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) |
| 10 |
|
cjcl |
|- ( ( A + ( _i x. B ) ) e. CC -> ( * ` ( A + ( _i x. B ) ) ) e. CC ) |
| 11 |
7 10
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) e. CC ) |
| 12 |
7 11
|
addcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) e. CC ) |
| 13 |
12
|
halfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. CC ) |
| 14 |
1
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 15 |
|
recl |
|- ( ( A + ( _i x. B ) ) e. CC -> ( Re ` ( A + ( _i x. B ) ) ) e. RR ) |
| 16 |
7 15
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) e. RR ) |
| 17 |
9 16
|
eqeltrrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. RR ) |
| 18 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 19 |
17 18
|
resubcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) e. RR ) |
| 20 |
2
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> _i e. CC ) |
| 21 |
3
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 22 |
2 21 4
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. B ) e. CC ) |
| 23 |
7 11
|
subcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) e. CC ) |
| 24 |
23
|
halfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. CC ) |
| 25 |
20 22 24
|
subdid |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) = ( ( _i x. ( _i x. B ) ) - ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
| 26 |
14 22 14
|
pnpcand |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( A + A ) ) = ( ( _i x. B ) - A ) ) |
| 27 |
22 14 22
|
pnpcan2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) = ( ( _i x. B ) - A ) ) |
| 28 |
26 27
|
eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( A + A ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) ) |
| 29 |
28
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) - ( A + A ) ) + ( * ` ( A + ( _i x. B ) ) ) ) = ( ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
| 30 |
14 14
|
addcld |
|- ( ( A e. RR /\ B e. RR ) -> ( A + A ) e. CC ) |
| 31 |
7 11 30
|
addsubd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) = ( ( ( A + ( _i x. B ) ) - ( A + A ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
| 32 |
22 22
|
addcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. B ) + ( _i x. B ) ) e. CC ) |
| 33 |
32 7 11
|
subsubd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) = ( ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
| 34 |
29 31 33
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
| 35 |
14
|
2timesd |
|- ( ( A e. RR /\ B e. RR ) -> ( 2 x. A ) = ( A + A ) ) |
| 36 |
35
|
oveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) ) |
| 37 |
22
|
2timesd |
|- ( ( A e. RR /\ B e. RR ) -> ( 2 x. ( _i x. B ) ) = ( ( _i x. B ) + ( _i x. B ) ) ) |
| 38 |
37
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
| 39 |
34 36 38
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) = ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
| 40 |
39
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) / 2 ) = ( ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) |
| 41 |
|
2cn |
|- 2 e. CC |
| 42 |
|
mulcl |
|- ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) |
| 43 |
41 14 42
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( 2 x. A ) e. CC ) |
| 44 |
41
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> 2 e. CC ) |
| 45 |
|
2ne0 |
|- 2 =/= 0 |
| 46 |
45
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> 2 =/= 0 ) |
| 47 |
12 43 44 46
|
divsubdird |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) / 2 ) = ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) ) |
| 48 |
|
mulcl |
|- ( ( 2 e. CC /\ ( _i x. B ) e. CC ) -> ( 2 x. ( _i x. B ) ) e. CC ) |
| 49 |
41 22 48
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( 2 x. ( _i x. B ) ) e. CC ) |
| 50 |
49 23 44 46
|
divsubdird |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) = ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 51 |
40 47 50
|
3eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) = ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 52 |
14 44 46
|
divcan3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 53 |
52
|
oveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) = ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) |
| 54 |
22 44 46
|
divcan3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. ( _i x. B ) ) / 2 ) = ( _i x. B ) ) |
| 55 |
54
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) = ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 56 |
51 53 55
|
3eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 57 |
56
|
oveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) = ( _i x. ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
| 58 |
20 20 21
|
mulassd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) = ( _i x. ( _i x. B ) ) ) |
| 59 |
20 23 44 46
|
divassd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) = ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 60 |
58 59
|
oveq12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) = ( ( _i x. ( _i x. B ) ) - ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
| 61 |
25 57 60
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) = ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) ) |
| 62 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 63 |
|
neg1rr |
|- -u 1 e. RR |
| 64 |
62 63
|
eqeltri |
|- ( _i x. _i ) e. RR |
| 65 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 66 |
|
remulcl |
|- ( ( ( _i x. _i ) e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) e. RR ) |
| 67 |
64 65 66
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) e. RR ) |
| 68 |
|
cjth |
|- ( ( A + ( _i x. B ) ) e. CC -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) e. RR /\ ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) ) |
| 69 |
68
|
simprd |
|- ( ( A + ( _i x. B ) ) e. CC -> ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) |
| 70 |
7 69
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) |
| 71 |
70
|
rehalfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) e. RR ) |
| 72 |
67 71
|
resubcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) e. RR ) |
| 73 |
61 72
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) e. RR ) |
| 74 |
|
rimul |
|- ( ( ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) e. RR /\ ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = 0 ) |
| 75 |
19 73 74
|
syl2anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = 0 ) |
| 76 |
13 14 75
|
subeq0d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) = A ) |
| 77 |
9 76
|
eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |