Step |
Hyp |
Ref |
Expression |
1 |
|
simplrl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C e. RR ) |
2 |
1
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C e. CC ) |
3 |
|
simplll |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A e. RR ) |
4 |
3
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A e. CC ) |
5 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
6 |
|
ax-icn |
|- _i e. CC |
7 |
6
|
a1i |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> _i e. CC ) |
8 |
|
simpllr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B e. RR ) |
9 |
8
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B e. CC ) |
10 |
7 9
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. B ) e. CC ) |
11 |
|
simplrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> D e. RR ) |
12 |
11
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> D e. CC ) |
13 |
7 12
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. D ) e. CC ) |
14 |
4 10 2 13
|
addsubeq4d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( C - A ) = ( ( _i x. B ) - ( _i x. D ) ) ) ) |
15 |
5 14
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) = ( ( _i x. B ) - ( _i x. D ) ) ) |
16 |
8 11
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( B - D ) e. RR ) |
17 |
7 9 12
|
subdid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) = ( ( _i x. B ) - ( _i x. D ) ) ) |
18 |
17 15
|
eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) = ( C - A ) ) |
19 |
1 3
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) e. RR ) |
20 |
18 19
|
eqeltrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) e. RR ) |
21 |
|
rimul |
|- ( ( ( B - D ) e. RR /\ ( _i x. ( B - D ) ) e. RR ) -> ( B - D ) = 0 ) |
22 |
16 20 21
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( B - D ) = 0 ) |
23 |
9 12 22
|
subeq0d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B = D ) |
24 |
23
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. B ) = ( _i x. D ) ) |
25 |
24
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( _i x. B ) - ( _i x. D ) ) = ( ( _i x. D ) - ( _i x. D ) ) ) |
26 |
13
|
subidd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( _i x. D ) - ( _i x. D ) ) = 0 ) |
27 |
15 25 26
|
3eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) = 0 ) |
28 |
2 4 27
|
subeq0d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C = A ) |
29 |
28
|
eqcomd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A = C ) |
30 |
29 23
|
jca |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( A = C /\ B = D ) ) |
31 |
30
|
ex |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) -> ( A = C /\ B = D ) ) ) |
32 |
|
oveq2 |
|- ( B = D -> ( _i x. B ) = ( _i x. D ) ) |
33 |
|
oveq12 |
|- ( ( A = C /\ ( _i x. B ) = ( _i x. D ) ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
34 |
32 33
|
sylan2 |
|- ( ( A = C /\ B = D ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
35 |
31 34
|
impbid1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( A = C /\ B = D ) ) ) |