| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplrl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C e. RR ) |
| 2 |
1
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C e. CC ) |
| 3 |
|
simplll |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A e. RR ) |
| 4 |
3
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A e. CC ) |
| 5 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
| 6 |
|
ax-icn |
|- _i e. CC |
| 7 |
6
|
a1i |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> _i e. CC ) |
| 8 |
|
simpllr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B e. RR ) |
| 9 |
8
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B e. CC ) |
| 10 |
7 9
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. B ) e. CC ) |
| 11 |
|
simplrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> D e. RR ) |
| 12 |
11
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> D e. CC ) |
| 13 |
7 12
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. D ) e. CC ) |
| 14 |
4 10 2 13
|
addsubeq4d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( C - A ) = ( ( _i x. B ) - ( _i x. D ) ) ) ) |
| 15 |
5 14
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) = ( ( _i x. B ) - ( _i x. D ) ) ) |
| 16 |
8 11
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( B - D ) e. RR ) |
| 17 |
7 9 12
|
subdid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) = ( ( _i x. B ) - ( _i x. D ) ) ) |
| 18 |
17 15
|
eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) = ( C - A ) ) |
| 19 |
1 3
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) e. RR ) |
| 20 |
18 19
|
eqeltrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) e. RR ) |
| 21 |
|
rimul |
|- ( ( ( B - D ) e. RR /\ ( _i x. ( B - D ) ) e. RR ) -> ( B - D ) = 0 ) |
| 22 |
16 20 21
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( B - D ) = 0 ) |
| 23 |
9 12 22
|
subeq0d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B = D ) |
| 24 |
23
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. B ) = ( _i x. D ) ) |
| 25 |
24
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( _i x. B ) - ( _i x. D ) ) = ( ( _i x. D ) - ( _i x. D ) ) ) |
| 26 |
13
|
subidd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( _i x. D ) - ( _i x. D ) ) = 0 ) |
| 27 |
15 25 26
|
3eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) = 0 ) |
| 28 |
2 4 27
|
subeq0d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C = A ) |
| 29 |
28
|
eqcomd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A = C ) |
| 30 |
29 23
|
jca |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( A = C /\ B = D ) ) |
| 31 |
30
|
ex |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) -> ( A = C /\ B = D ) ) ) |
| 32 |
|
oveq2 |
|- ( B = D -> ( _i x. B ) = ( _i x. D ) ) |
| 33 |
|
oveq12 |
|- ( ( A = C /\ ( _i x. B ) = ( _i x. D ) ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
| 34 |
32 33
|
sylan2 |
|- ( ( A = C /\ B = D ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) |
| 35 |
31 34
|
impbid1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( A = C /\ B = D ) ) ) |