Metamath Proof Explorer


Theorem csbcnv

Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbcnv
|- `' [_ A / x ]_ F = [_ A / x ]_ `' F

Proof

Step Hyp Ref Expression
1 sbcbr
 |-  ( [. A / x ]. z F y <-> z [_ A / x ]_ F y )
2 1 opabbii
 |-  { <. y , z >. | [. A / x ]. z F y } = { <. y , z >. | z [_ A / x ]_ F y }
3 csbopab
 |-  [_ A / x ]_ { <. y , z >. | z F y } = { <. y , z >. | [. A / x ]. z F y }
4 df-cnv
 |-  `' [_ A / x ]_ F = { <. y , z >. | z [_ A / x ]_ F y }
5 2 3 4 3eqtr4ri
 |-  `' [_ A / x ]_ F = [_ A / x ]_ { <. y , z >. | z F y }
6 df-cnv
 |-  `' F = { <. y , z >. | z F y }
7 6 csbeq2i
 |-  [_ A / x ]_ `' F = [_ A / x ]_ { <. y , z >. | z F y }
8 5 7 eqtr4i
 |-  `' [_ A / x ]_ F = [_ A / x ]_ `' F